![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > otth | GIF version |
Description: Ordered triple theorem. (Contributed by NM, 25-Sep-2014.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
otth.1 | ⊢ 𝐴 ∈ V |
otth.2 | ⊢ 𝐵 ∈ V |
otth.3 | ⊢ 𝑅 ∈ V |
Ref | Expression |
---|---|
otth | ⊢ (⟨𝐴, 𝐵, 𝑅⟩ = ⟨𝐶, 𝐷, 𝑆⟩ ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ∧ 𝑅 = 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ot 3604 | . . 3 ⊢ ⟨𝐴, 𝐵, 𝑅⟩ = ⟨⟨𝐴, 𝐵⟩, 𝑅⟩ | |
2 | df-ot 3604 | . . 3 ⊢ ⟨𝐶, 𝐷, 𝑆⟩ = ⟨⟨𝐶, 𝐷⟩, 𝑆⟩ | |
3 | 1, 2 | eqeq12i 2191 | . 2 ⊢ (⟨𝐴, 𝐵, 𝑅⟩ = ⟨𝐶, 𝐷, 𝑆⟩ ↔ ⟨⟨𝐴, 𝐵⟩, 𝑅⟩ = ⟨⟨𝐶, 𝐷⟩, 𝑆⟩) |
4 | otth.1 | . . 3 ⊢ 𝐴 ∈ V | |
5 | otth.2 | . . 3 ⊢ 𝐵 ∈ V | |
6 | otth.3 | . . 3 ⊢ 𝑅 ∈ V | |
7 | 4, 5, 6 | otth2 4243 | . 2 ⊢ (⟨⟨𝐴, 𝐵⟩, 𝑅⟩ = ⟨⟨𝐶, 𝐷⟩, 𝑆⟩ ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ∧ 𝑅 = 𝑆)) |
8 | 3, 7 | bitri 184 | 1 ⊢ (⟨𝐴, 𝐵, 𝑅⟩ = ⟨𝐶, 𝐷, 𝑆⟩ ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ∧ 𝑅 = 𝑆)) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ∧ w3a 978 = wceq 1353 ∈ wcel 2148 Vcvv 2739 ⟨cop 3597 ⟨cotp 3598 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-ot 3604 |
This theorem is referenced by: euotd 4256 |
Copyright terms: Public domain | W3C validator |