| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > otth | GIF version | ||
| Description: Ordered triple theorem. (Contributed by NM, 25-Sep-2014.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| otth.1 | ⊢ 𝐴 ∈ V |
| otth.2 | ⊢ 𝐵 ∈ V |
| otth.3 | ⊢ 𝑅 ∈ V |
| Ref | Expression |
|---|---|
| otth | ⊢ (〈𝐴, 𝐵, 𝑅〉 = 〈𝐶, 𝐷, 𝑆〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ∧ 𝑅 = 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ot 3632 | . . 3 ⊢ 〈𝐴, 𝐵, 𝑅〉 = 〈〈𝐴, 𝐵〉, 𝑅〉 | |
| 2 | df-ot 3632 | . . 3 ⊢ 〈𝐶, 𝐷, 𝑆〉 = 〈〈𝐶, 𝐷〉, 𝑆〉 | |
| 3 | 1, 2 | eqeq12i 2210 | . 2 ⊢ (〈𝐴, 𝐵, 𝑅〉 = 〈𝐶, 𝐷, 𝑆〉 ↔ 〈〈𝐴, 𝐵〉, 𝑅〉 = 〈〈𝐶, 𝐷〉, 𝑆〉) |
| 4 | otth.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 5 | otth.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 6 | otth.3 | . . 3 ⊢ 𝑅 ∈ V | |
| 7 | 4, 5, 6 | otth2 4274 | . 2 ⊢ (〈〈𝐴, 𝐵〉, 𝑅〉 = 〈〈𝐶, 𝐷〉, 𝑆〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ∧ 𝑅 = 𝑆)) |
| 8 | 3, 7 | bitri 184 | 1 ⊢ (〈𝐴, 𝐵, 𝑅〉 = 〈𝐶, 𝐷, 𝑆〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ∧ 𝑅 = 𝑆)) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 Vcvv 2763 〈cop 3625 〈cotp 3626 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-ot 3632 |
| This theorem is referenced by: euotd 4287 |
| Copyright terms: Public domain | W3C validator |