ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecopovsym GIF version

Theorem ecopovsym 6402
Description: Assuming the operation 𝐹 is commutative, show that the relation , specified by the first hypothesis, is symmetric. (Contributed by NM, 27-Aug-1995.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
ecopopr.1 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))}
ecopopr.com (𝑥 + 𝑦) = (𝑦 + 𝑥)
Assertion
Ref Expression
ecopovsym (𝐴 𝐵𝐵 𝐴)
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝑣,𝑢, +   𝑥,𝑆,𝑦,𝑧,𝑤,𝑣,𝑢
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)   𝐵(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)   (𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)

Proof of Theorem ecopovsym
Dummy variables 𝑓 𝑔 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ecopopr.1 . . . . 5 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))}
2 opabssxp 4525 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))} ⊆ ((𝑆 × 𝑆) × (𝑆 × 𝑆))
31, 2eqsstri 3057 . . . 4 ⊆ ((𝑆 × 𝑆) × (𝑆 × 𝑆))
43brel 4503 . . 3 (𝐴 𝐵 → (𝐴 ∈ (𝑆 × 𝑆) ∧ 𝐵 ∈ (𝑆 × 𝑆)))
5 eqid 2089 . . . 4 (𝑆 × 𝑆) = (𝑆 × 𝑆)
6 breq1 3854 . . . . 5 (⟨𝑓, 𝑔⟩ = 𝐴 → (⟨𝑓, 𝑔, 𝑡⟩ ↔ 𝐴 , 𝑡⟩))
7 breq2 3855 . . . . 5 (⟨𝑓, 𝑔⟩ = 𝐴 → (⟨, 𝑡𝑓, 𝑔⟩ ↔ ⟨, 𝑡 𝐴))
86, 7bibi12d 234 . . . 4 (⟨𝑓, 𝑔⟩ = 𝐴 → ((⟨𝑓, 𝑔, 𝑡⟩ ↔ ⟨, 𝑡𝑓, 𝑔⟩) ↔ (𝐴 , 𝑡⟩ ↔ ⟨, 𝑡 𝐴)))
9 breq2 3855 . . . . 5 (⟨, 𝑡⟩ = 𝐵 → (𝐴 , 𝑡⟩ ↔ 𝐴 𝐵))
10 breq1 3854 . . . . 5 (⟨, 𝑡⟩ = 𝐵 → (⟨, 𝑡 𝐴𝐵 𝐴))
119, 10bibi12d 234 . . . 4 (⟨, 𝑡⟩ = 𝐵 → ((𝐴 , 𝑡⟩ ↔ ⟨, 𝑡 𝐴) ↔ (𝐴 𝐵𝐵 𝐴)))
121ecopoveq 6401 . . . . . 6 (((𝑓𝑆𝑔𝑆) ∧ (𝑆𝑡𝑆)) → (⟨𝑓, 𝑔, 𝑡⟩ ↔ (𝑓 + 𝑡) = (𝑔 + )))
13 vex 2623 . . . . . . . . 9 𝑓 ∈ V
14 vex 2623 . . . . . . . . 9 𝑡 ∈ V
15 ecopopr.com . . . . . . . . 9 (𝑥 + 𝑦) = (𝑦 + 𝑥)
1613, 14, 15caovcom 5816 . . . . . . . 8 (𝑓 + 𝑡) = (𝑡 + 𝑓)
17 vex 2623 . . . . . . . . 9 𝑔 ∈ V
18 vex 2623 . . . . . . . . 9 ∈ V
1917, 18, 15caovcom 5816 . . . . . . . 8 (𝑔 + ) = ( + 𝑔)
2016, 19eqeq12i 2102 . . . . . . 7 ((𝑓 + 𝑡) = (𝑔 + ) ↔ (𝑡 + 𝑓) = ( + 𝑔))
21 eqcom 2091 . . . . . . 7 ((𝑡 + 𝑓) = ( + 𝑔) ↔ ( + 𝑔) = (𝑡 + 𝑓))
2220, 21bitri 183 . . . . . 6 ((𝑓 + 𝑡) = (𝑔 + ) ↔ ( + 𝑔) = (𝑡 + 𝑓))
2312, 22syl6bb 195 . . . . 5 (((𝑓𝑆𝑔𝑆) ∧ (𝑆𝑡𝑆)) → (⟨𝑓, 𝑔, 𝑡⟩ ↔ ( + 𝑔) = (𝑡 + 𝑓)))
241ecopoveq 6401 . . . . . 6 (((𝑆𝑡𝑆) ∧ (𝑓𝑆𝑔𝑆)) → (⟨, 𝑡𝑓, 𝑔⟩ ↔ ( + 𝑔) = (𝑡 + 𝑓)))
2524ancoms 265 . . . . 5 (((𝑓𝑆𝑔𝑆) ∧ (𝑆𝑡𝑆)) → (⟨, 𝑡𝑓, 𝑔⟩ ↔ ( + 𝑔) = (𝑡 + 𝑓)))
2623, 25bitr4d 190 . . . 4 (((𝑓𝑆𝑔𝑆) ∧ (𝑆𝑡𝑆)) → (⟨𝑓, 𝑔, 𝑡⟩ ↔ ⟨, 𝑡𝑓, 𝑔⟩))
275, 8, 11, 262optocl 4528 . . 3 ((𝐴 ∈ (𝑆 × 𝑆) ∧ 𝐵 ∈ (𝑆 × 𝑆)) → (𝐴 𝐵𝐵 𝐴))
284, 27syl 14 . 2 (𝐴 𝐵 → (𝐴 𝐵𝐵 𝐴))
2928ibi 175 1 (𝐴 𝐵𝐵 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1290  wex 1427  wcel 1439  cop 3453   class class class wbr 3851  {copab 3904   × cxp 4449  (class class class)co 5666
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-pow 4015  ax-pr 4045
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ral 2365  df-rex 2366  df-v 2622  df-un 3004  df-in 3006  df-ss 3013  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-br 3852  df-opab 3906  df-xp 4457  df-iota 4993  df-fv 5036  df-ov 5669
This theorem is referenced by:  ecopover  6404
  Copyright terms: Public domain W3C validator