ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecopovsym GIF version

Theorem ecopovsym 6731
Description: Assuming the operation 𝐹 is commutative, show that the relation , specified by the first hypothesis, is symmetric. (Contributed by NM, 27-Aug-1995.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
ecopopr.1 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))}
ecopopr.com (𝑥 + 𝑦) = (𝑦 + 𝑥)
Assertion
Ref Expression
ecopovsym (𝐴 𝐵𝐵 𝐴)
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝑣,𝑢, +   𝑥,𝑆,𝑦,𝑧,𝑤,𝑣,𝑢
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)   𝐵(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)   (𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)

Proof of Theorem ecopovsym
Dummy variables 𝑓 𝑔 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ecopopr.1 . . . . 5 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))}
2 opabssxp 4757 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))} ⊆ ((𝑆 × 𝑆) × (𝑆 × 𝑆))
31, 2eqsstri 3229 . . . 4 ⊆ ((𝑆 × 𝑆) × (𝑆 × 𝑆))
43brel 4735 . . 3 (𝐴 𝐵 → (𝐴 ∈ (𝑆 × 𝑆) ∧ 𝐵 ∈ (𝑆 × 𝑆)))
5 eqid 2206 . . . 4 (𝑆 × 𝑆) = (𝑆 × 𝑆)
6 breq1 4054 . . . . 5 (⟨𝑓, 𝑔⟩ = 𝐴 → (⟨𝑓, 𝑔, 𝑡⟩ ↔ 𝐴 , 𝑡⟩))
7 breq2 4055 . . . . 5 (⟨𝑓, 𝑔⟩ = 𝐴 → (⟨, 𝑡𝑓, 𝑔⟩ ↔ ⟨, 𝑡 𝐴))
86, 7bibi12d 235 . . . 4 (⟨𝑓, 𝑔⟩ = 𝐴 → ((⟨𝑓, 𝑔, 𝑡⟩ ↔ ⟨, 𝑡𝑓, 𝑔⟩) ↔ (𝐴 , 𝑡⟩ ↔ ⟨, 𝑡 𝐴)))
9 breq2 4055 . . . . 5 (⟨, 𝑡⟩ = 𝐵 → (𝐴 , 𝑡⟩ ↔ 𝐴 𝐵))
10 breq1 4054 . . . . 5 (⟨, 𝑡⟩ = 𝐵 → (⟨, 𝑡 𝐴𝐵 𝐴))
119, 10bibi12d 235 . . . 4 (⟨, 𝑡⟩ = 𝐵 → ((𝐴 , 𝑡⟩ ↔ ⟨, 𝑡 𝐴) ↔ (𝐴 𝐵𝐵 𝐴)))
121ecopoveq 6730 . . . . . 6 (((𝑓𝑆𝑔𝑆) ∧ (𝑆𝑡𝑆)) → (⟨𝑓, 𝑔, 𝑡⟩ ↔ (𝑓 + 𝑡) = (𝑔 + )))
13 vex 2776 . . . . . . . . 9 𝑓 ∈ V
14 vex 2776 . . . . . . . . 9 𝑡 ∈ V
15 ecopopr.com . . . . . . . . 9 (𝑥 + 𝑦) = (𝑦 + 𝑥)
1613, 14, 15caovcom 6117 . . . . . . . 8 (𝑓 + 𝑡) = (𝑡 + 𝑓)
17 vex 2776 . . . . . . . . 9 𝑔 ∈ V
18 vex 2776 . . . . . . . . 9 ∈ V
1917, 18, 15caovcom 6117 . . . . . . . 8 (𝑔 + ) = ( + 𝑔)
2016, 19eqeq12i 2220 . . . . . . 7 ((𝑓 + 𝑡) = (𝑔 + ) ↔ (𝑡 + 𝑓) = ( + 𝑔))
21 eqcom 2208 . . . . . . 7 ((𝑡 + 𝑓) = ( + 𝑔) ↔ ( + 𝑔) = (𝑡 + 𝑓))
2220, 21bitri 184 . . . . . 6 ((𝑓 + 𝑡) = (𝑔 + ) ↔ ( + 𝑔) = (𝑡 + 𝑓))
2312, 22bitrdi 196 . . . . 5 (((𝑓𝑆𝑔𝑆) ∧ (𝑆𝑡𝑆)) → (⟨𝑓, 𝑔, 𝑡⟩ ↔ ( + 𝑔) = (𝑡 + 𝑓)))
241ecopoveq 6730 . . . . . 6 (((𝑆𝑡𝑆) ∧ (𝑓𝑆𝑔𝑆)) → (⟨, 𝑡𝑓, 𝑔⟩ ↔ ( + 𝑔) = (𝑡 + 𝑓)))
2524ancoms 268 . . . . 5 (((𝑓𝑆𝑔𝑆) ∧ (𝑆𝑡𝑆)) → (⟨, 𝑡𝑓, 𝑔⟩ ↔ ( + 𝑔) = (𝑡 + 𝑓)))
2623, 25bitr4d 191 . . . 4 (((𝑓𝑆𝑔𝑆) ∧ (𝑆𝑡𝑆)) → (⟨𝑓, 𝑔, 𝑡⟩ ↔ ⟨, 𝑡𝑓, 𝑔⟩))
275, 8, 11, 262optocl 4760 . . 3 ((𝐴 ∈ (𝑆 × 𝑆) ∧ 𝐵 ∈ (𝑆 × 𝑆)) → (𝐴 𝐵𝐵 𝐴))
284, 27syl 14 . 2 (𝐴 𝐵 → (𝐴 𝐵𝐵 𝐴))
2928ibi 176 1 (𝐴 𝐵𝐵 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wex 1516  wcel 2177  cop 3641   class class class wbr 4051  {copab 4112   × cxp 4681  (class class class)co 5957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-xp 4689  df-iota 5241  df-fv 5288  df-ov 5960
This theorem is referenced by:  ecopover  6733
  Copyright terms: Public domain W3C validator