![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqfnov | GIF version |
Description: Equality of two operations is determined by their values. (Contributed by NM, 1-Sep-2005.) |
Ref | Expression |
---|---|
eqfnov | ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐺 Fn (𝐶 × 𝐷)) → (𝐹 = 𝐺 ↔ ((𝐴 × 𝐵) = (𝐶 × 𝐷) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝐹𝑦) = (𝑥𝐺𝑦)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqfnfv2 5656 | . 2 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐺 Fn (𝐶 × 𝐷)) → (𝐹 = 𝐺 ↔ ((𝐴 × 𝐵) = (𝐶 × 𝐷) ∧ ∀𝑧 ∈ (𝐴 × 𝐵)(𝐹‘𝑧) = (𝐺‘𝑧)))) | |
2 | fveq2 5554 | . . . . . 6 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝐹‘𝑧) = (𝐹‘〈𝑥, 𝑦〉)) | |
3 | fveq2 5554 | . . . . . 6 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝐺‘𝑧) = (𝐺‘〈𝑥, 𝑦〉)) | |
4 | 2, 3 | eqeq12d 2208 | . . . . 5 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → ((𝐹‘𝑧) = (𝐺‘𝑧) ↔ (𝐹‘〈𝑥, 𝑦〉) = (𝐺‘〈𝑥, 𝑦〉))) |
5 | df-ov 5921 | . . . . . 6 ⊢ (𝑥𝐹𝑦) = (𝐹‘〈𝑥, 𝑦〉) | |
6 | df-ov 5921 | . . . . . 6 ⊢ (𝑥𝐺𝑦) = (𝐺‘〈𝑥, 𝑦〉) | |
7 | 5, 6 | eqeq12i 2207 | . . . . 5 ⊢ ((𝑥𝐹𝑦) = (𝑥𝐺𝑦) ↔ (𝐹‘〈𝑥, 𝑦〉) = (𝐺‘〈𝑥, 𝑦〉)) |
8 | 4, 7 | bitr4di 198 | . . . 4 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → ((𝐹‘𝑧) = (𝐺‘𝑧) ↔ (𝑥𝐹𝑦) = (𝑥𝐺𝑦))) |
9 | 8 | ralxp 4805 | . . 3 ⊢ (∀𝑧 ∈ (𝐴 × 𝐵)(𝐹‘𝑧) = (𝐺‘𝑧) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝐹𝑦) = (𝑥𝐺𝑦)) |
10 | 9 | anbi2i 457 | . 2 ⊢ (((𝐴 × 𝐵) = (𝐶 × 𝐷) ∧ ∀𝑧 ∈ (𝐴 × 𝐵)(𝐹‘𝑧) = (𝐺‘𝑧)) ↔ ((𝐴 × 𝐵) = (𝐶 × 𝐷) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝐹𝑦) = (𝑥𝐺𝑦))) |
11 | 1, 10 | bitrdi 196 | 1 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐺 Fn (𝐶 × 𝐷)) → (𝐹 = 𝐺 ↔ ((𝐴 × 𝐵) = (𝐶 × 𝐷) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝐹𝑦) = (𝑥𝐺𝑦)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∀wral 2472 〈cop 3621 × cxp 4657 Fn wfn 5249 ‘cfv 5254 (class class class)co 5918 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2986 df-csb 3081 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-iota 5215 df-fun 5256 df-fn 5257 df-fv 5262 df-ov 5921 |
This theorem is referenced by: eqfnov2 6026 |
Copyright terms: Public domain | W3C validator |