ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  preqr2g GIF version

Theorem preqr2g 3747
Description: Reverse equality lemma for unordered pairs. If two unordered pairs have the same second element, the second elements are equal. Closed form of preqr2 3749. (Contributed by Jim Kingdon, 21-Sep-2018.)
Assertion
Ref Expression
preqr2g ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ({𝐶, 𝐴} = {𝐶, 𝐵} → 𝐴 = 𝐵))

Proof of Theorem preqr2g
StepHypRef Expression
1 prcom 3652 . . 3 {𝐶, 𝐴} = {𝐴, 𝐶}
2 prcom 3652 . . 3 {𝐶, 𝐵} = {𝐵, 𝐶}
31, 2eqeq12i 2179 . 2 ({𝐶, 𝐴} = {𝐶, 𝐵} ↔ {𝐴, 𝐶} = {𝐵, 𝐶})
4 preqr1g 3746 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ({𝐴, 𝐶} = {𝐵, 𝐶} → 𝐴 = 𝐵))
53, 4syl5bi 151 1 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ({𝐶, 𝐴} = {𝐶, 𝐵} → 𝐴 = 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136  Vcvv 2726  {cpr 3577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583
This theorem is referenced by:  opth  4215
  Copyright terms: Public domain W3C validator