ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  preqr2g GIF version

Theorem preqr2g 3769
Description: Reverse equality lemma for unordered pairs. If two unordered pairs have the same second element, the second elements are equal. Closed form of preqr2 3771. (Contributed by Jim Kingdon, 21-Sep-2018.)
Assertion
Ref Expression
preqr2g ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ({𝐶, 𝐴} = {𝐶, 𝐵} → 𝐴 = 𝐵))

Proof of Theorem preqr2g
StepHypRef Expression
1 prcom 3670 . . 3 {𝐶, 𝐴} = {𝐴, 𝐶}
2 prcom 3670 . . 3 {𝐶, 𝐵} = {𝐵, 𝐶}
31, 2eqeq12i 2191 . 2 ({𝐶, 𝐴} = {𝐶, 𝐵} ↔ {𝐴, 𝐶} = {𝐵, 𝐶})
4 preqr1g 3768 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ({𝐴, 𝐶} = {𝐵, 𝐶} → 𝐴 = 𝐵))
53, 4biimtrid 152 1 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ({𝐶, 𝐴} = {𝐶, 𝐵} → 𝐴 = 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  Vcvv 2739  {cpr 3595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-un 3135  df-sn 3600  df-pr 3601
This theorem is referenced by:  opth  4239
  Copyright terms: Public domain W3C validator