ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  preqr2g GIF version

Theorem preqr2g 3844
Description: Reverse equality lemma for unordered pairs. If two unordered pairs have the same second element, the second elements are equal. Closed form of preqr2 3846. (Contributed by Jim Kingdon, 21-Sep-2018.)
Assertion
Ref Expression
preqr2g ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ({𝐶, 𝐴} = {𝐶, 𝐵} → 𝐴 = 𝐵))

Proof of Theorem preqr2g
StepHypRef Expression
1 prcom 3742 . . 3 {𝐶, 𝐴} = {𝐴, 𝐶}
2 prcom 3742 . . 3 {𝐶, 𝐵} = {𝐵, 𝐶}
31, 2eqeq12i 2243 . 2 ({𝐶, 𝐴} = {𝐶, 𝐵} ↔ {𝐴, 𝐶} = {𝐵, 𝐶})
4 preqr1g 3843 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ({𝐴, 𝐶} = {𝐵, 𝐶} → 𝐴 = 𝐵))
53, 4biimtrid 152 1 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ({𝐶, 𝐴} = {𝐶, 𝐵} → 𝐴 = 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  Vcvv 2799  {cpr 3667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673
This theorem is referenced by:  opth  4322
  Copyright terms: Public domain W3C validator