Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > issetri | GIF version |
Description: A way to say "𝐴 is a set" (inference form). (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
issetri.1 | ⊢ ∃𝑥 𝑥 = 𝐴 |
Ref | Expression |
---|---|
issetri | ⊢ 𝐴 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issetri.1 | . 2 ⊢ ∃𝑥 𝑥 = 𝐴 | |
2 | isset 2732 | . 2 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
3 | 1, 2 | mpbir 145 | 1 ⊢ 𝐴 ∈ V |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 ∃wex 1480 ∈ wcel 2136 Vcvv 2726 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-v 2728 |
This theorem is referenced by: 0ex 4109 inex1 4116 vpwex 4158 zfpair2 4188 uniex 4415 bdinex1 13781 bj-zfpair2 13792 bj-uniex 13799 bj-omex2 13859 |
Copyright terms: Public domain | W3C validator |