ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issetri GIF version

Theorem issetri 2772
Description: A way to say "𝐴 is a set" (inference form). (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
issetri.1 𝑥 𝑥 = 𝐴
Assertion
Ref Expression
issetri 𝐴 ∈ V
Distinct variable group:   𝑥,𝐴

Proof of Theorem issetri
StepHypRef Expression
1 issetri.1 . 2 𝑥 𝑥 = 𝐴
2 isset 2769 . 2 (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)
31, 2mpbir 146 1 𝐴 ∈ V
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wex 1506  wcel 2167  Vcvv 2763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-v 2765
This theorem is referenced by:  0ex  4160  inex1  4167  vpwex  4212  zfpair2  4243  uniex  4472  bdinex1  15545  bj-zfpair2  15556  bj-uniex  15563  bj-omex2  15623
  Copyright terms: Public domain W3C validator