![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > issetri | GIF version |
Description: A way to say "𝐴 is a set" (inference form). (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
issetri.1 | ⊢ ∃𝑥 𝑥 = 𝐴 |
Ref | Expression |
---|---|
issetri | ⊢ 𝐴 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issetri.1 | . 2 ⊢ ∃𝑥 𝑥 = 𝐴 | |
2 | isset 2647 | . 2 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
3 | 1, 2 | mpbir 145 | 1 ⊢ 𝐴 ∈ V |
Colors of variables: wff set class |
Syntax hints: = wceq 1299 ∃wex 1436 ∈ wcel 1448 Vcvv 2641 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1391 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-4 1455 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-ext 2082 |
This theorem depends on definitions: df-bi 116 df-sb 1704 df-clab 2087 df-cleq 2093 df-clel 2096 df-v 2643 |
This theorem is referenced by: 0ex 3995 inex1 4002 vpwex 4043 zfpair2 4070 uniex 4297 bdinex1 12678 bj-zfpair2 12689 bj-uniex 12696 bj-omex2 12760 |
Copyright terms: Public domain | W3C validator |