ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issetri GIF version

Theorem issetri 2780
Description: A way to say "𝐴 is a set" (inference form). (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
issetri.1 𝑥 𝑥 = 𝐴
Assertion
Ref Expression
issetri 𝐴 ∈ V
Distinct variable group:   𝑥,𝐴

Proof of Theorem issetri
StepHypRef Expression
1 issetri.1 . 2 𝑥 𝑥 = 𝐴
2 isset 2777 . 2 (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)
31, 2mpbir 146 1 𝐴 ∈ V
Colors of variables: wff set class
Syntax hints:   = wceq 1372  wex 1514  wcel 2175  Vcvv 2771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-v 2773
This theorem is referenced by:  0ex  4170  inex1  4177  vpwex  4222  zfpair2  4253  uniex  4483  bdinex1  15768  bj-zfpair2  15779  bj-uniex  15786  bj-omex2  15846
  Copyright terms: Public domain W3C validator