| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > issetri | GIF version | ||
| Description: A way to say "𝐴 is a set" (inference form). (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| issetri.1 | ⊢ ∃𝑥 𝑥 = 𝐴 |
| Ref | Expression |
|---|---|
| issetri | ⊢ 𝐴 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issetri.1 | . 2 ⊢ ∃𝑥 𝑥 = 𝐴 | |
| 2 | isset 2769 | . 2 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
| 3 | 1, 2 | mpbir 146 | 1 ⊢ 𝐴 ∈ V |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ∃wex 1506 ∈ wcel 2167 Vcvv 2763 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-v 2765 |
| This theorem is referenced by: 0ex 4160 inex1 4167 vpwex 4212 zfpair2 4243 uniex 4472 bdinex1 15545 bj-zfpair2 15556 bj-uniex 15563 bj-omex2 15623 |
| Copyright terms: Public domain | W3C validator |