Step | Hyp | Ref
| Expression |
1 | | elex 2737 |
. 2
⊢ (𝐴 ∈ (𝐵 × 𝐶) → 𝐴 ∈ V) |
2 | | elex 2737 |
. . . 4
⊢ (∩ ∩ 𝐴 ∈ 𝐵 → ∩ ∩ 𝐴
∈ V) |
3 | | elex 2737 |
. . . 4
⊢ (∪ ran {𝐴} ∈ 𝐶 → ∪ ran
{𝐴} ∈
V) |
4 | 2, 3 | anim12i 336 |
. . 3
⊢ ((∩ ∩ 𝐴 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶) → (∩ ∩ 𝐴 ∈ V ∧ ∪
ran {𝐴} ∈
V)) |
5 | | opexg 4206 |
. . . . 5
⊢ ((∩ ∩ 𝐴 ∈ V ∧ ∪
ran {𝐴} ∈ V) →
〈∩ ∩ 𝐴, ∪
ran {𝐴}〉 ∈
V) |
6 | 5 | adantl 275 |
. . . 4
⊢ ((𝐴 = 〈∩ ∩ 𝐴, ∪ ran {𝐴}〉 ∧ (∩ ∩ 𝐴 ∈ V ∧ ∪
ran {𝐴} ∈ V)) →
〈∩ ∩ 𝐴, ∪
ran {𝐴}〉 ∈
V) |
7 | | eleq1 2229 |
. . . . 5
⊢ (𝐴 = 〈∩ ∩ 𝐴, ∪ ran {𝐴}〉 → (𝐴 ∈ V ↔ 〈∩ ∩ 𝐴, ∪ ran {𝐴}〉 ∈
V)) |
8 | 7 | adantr 274 |
. . . 4
⊢ ((𝐴 = 〈∩ ∩ 𝐴, ∪ ran {𝐴}〉 ∧ (∩ ∩ 𝐴 ∈ V ∧ ∪
ran {𝐴} ∈ V)) →
(𝐴 ∈ V ↔
〈∩ ∩ 𝐴, ∪
ran {𝐴}〉 ∈
V)) |
9 | 6, 8 | mpbird 166 |
. . 3
⊢ ((𝐴 = 〈∩ ∩ 𝐴, ∪ ran {𝐴}〉 ∧ (∩ ∩ 𝐴 ∈ V ∧ ∪
ran {𝐴} ∈ V)) →
𝐴 ∈
V) |
10 | 4, 9 | sylan2 284 |
. 2
⊢ ((𝐴 = 〈∩ ∩ 𝐴, ∪ ran {𝐴}〉 ∧ (∩ ∩ 𝐴 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶)) → 𝐴 ∈ V) |
11 | | elxp 4621 |
. . . 4
⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) |
12 | | sneq 3587 |
. . . . . . . . . . . . . 14
⊢ (𝐴 = 〈𝑥, 𝑦〉 → {𝐴} = {〈𝑥, 𝑦〉}) |
13 | 12 | rneqd 4833 |
. . . . . . . . . . . . 13
⊢ (𝐴 = 〈𝑥, 𝑦〉 → ran {𝐴} = ran {〈𝑥, 𝑦〉}) |
14 | 13 | unieqd 3800 |
. . . . . . . . . . . 12
⊢ (𝐴 = 〈𝑥, 𝑦〉 → ∪
ran {𝐴} = ∪ ran {〈𝑥, 𝑦〉}) |
15 | | vex 2729 |
. . . . . . . . . . . . 13
⊢ 𝑥 ∈ V |
16 | | vex 2729 |
. . . . . . . . . . . . 13
⊢ 𝑦 ∈ V |
17 | 15, 16 | op2nda 5088 |
. . . . . . . . . . . 12
⊢ ∪ ran {〈𝑥, 𝑦〉} = 𝑦 |
18 | 14, 17 | eqtr2di 2216 |
. . . . . . . . . . 11
⊢ (𝐴 = 〈𝑥, 𝑦〉 → 𝑦 = ∪ ran {𝐴}) |
19 | 18 | pm4.71ri 390 |
. . . . . . . . . 10
⊢ (𝐴 = 〈𝑥, 𝑦〉 ↔ (𝑦 = ∪ ran {𝐴} ∧ 𝐴 = 〈𝑥, 𝑦〉)) |
20 | 19 | anbi1i 454 |
. . . . . . . . 9
⊢ ((𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ((𝑦 = ∪ ran {𝐴} ∧ 𝐴 = 〈𝑥, 𝑦〉) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) |
21 | | anass 399 |
. . . . . . . . 9
⊢ (((𝑦 = ∪
ran {𝐴} ∧ 𝐴 = 〈𝑥, 𝑦〉) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ (𝑦 = ∪ ran {𝐴} ∧ (𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)))) |
22 | 20, 21 | bitri 183 |
. . . . . . . 8
⊢ ((𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ (𝑦 = ∪ ran {𝐴} ∧ (𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)))) |
23 | 22 | exbii 1593 |
. . . . . . 7
⊢
(∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑦(𝑦 = ∪ ran {𝐴} ∧ (𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)))) |
24 | | snexg 4163 |
. . . . . . . . . 10
⊢ (𝐴 ∈ V → {𝐴} ∈ V) |
25 | | rnexg 4869 |
. . . . . . . . . 10
⊢ ({𝐴} ∈ V → ran {𝐴} ∈ V) |
26 | 24, 25 | syl 14 |
. . . . . . . . 9
⊢ (𝐴 ∈ V → ran {𝐴} ∈ V) |
27 | | uniexg 4417 |
. . . . . . . . 9
⊢ (ran
{𝐴} ∈ V → ∪ ran {𝐴} ∈ V) |
28 | 26, 27 | syl 14 |
. . . . . . . 8
⊢ (𝐴 ∈ V → ∪ ran {𝐴} ∈ V) |
29 | | opeq2 3759 |
. . . . . . . . . . 11
⊢ (𝑦 = ∪
ran {𝐴} → 〈𝑥, 𝑦〉 = 〈𝑥, ∪ ran {𝐴}〉) |
30 | 29 | eqeq2d 2177 |
. . . . . . . . . 10
⊢ (𝑦 = ∪
ran {𝐴} → (𝐴 = 〈𝑥, 𝑦〉 ↔ 𝐴 = 〈𝑥, ∪ ran {𝐴}〉)) |
31 | | eleq1 2229 |
. . . . . . . . . . 11
⊢ (𝑦 = ∪
ran {𝐴} → (𝑦 ∈ 𝐶 ↔ ∪ ran
{𝐴} ∈ 𝐶)) |
32 | 31 | anbi2d 460 |
. . . . . . . . . 10
⊢ (𝑦 = ∪
ran {𝐴} → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶))) |
33 | 30, 32 | anbi12d 465 |
. . . . . . . . 9
⊢ (𝑦 = ∪
ran {𝐴} → ((𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ (𝐴 = 〈𝑥, ∪ ran {𝐴}〉 ∧ (𝑥 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶)))) |
34 | 33 | ceqsexgv 2855 |
. . . . . . . 8
⊢ (∪ ran {𝐴} ∈ V → (∃𝑦(𝑦 = ∪ ran {𝐴} ∧ (𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) ↔ (𝐴 = 〈𝑥, ∪ ran {𝐴}〉 ∧ (𝑥 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶)))) |
35 | 28, 34 | syl 14 |
. . . . . . 7
⊢ (𝐴 ∈ V → (∃𝑦(𝑦 = ∪ ran {𝐴} ∧ (𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) ↔ (𝐴 = 〈𝑥, ∪ ran {𝐴}〉 ∧ (𝑥 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶)))) |
36 | 23, 35 | syl5bb 191 |
. . . . . 6
⊢ (𝐴 ∈ V → (∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ (𝐴 = 〈𝑥, ∪ ran {𝐴}〉 ∧ (𝑥 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶)))) |
37 | | inteq 3827 |
. . . . . . . . . . . 12
⊢ (𝐴 = 〈𝑥, ∪ ran {𝐴}〉 → ∩ 𝐴 =
∩ 〈𝑥, ∪ ran {𝐴}〉) |
38 | 37 | inteqd 3829 |
. . . . . . . . . . 11
⊢ (𝐴 = 〈𝑥, ∪ ran {𝐴}〉 → ∩ ∩ 𝐴 = ∩ ∩ 〈𝑥, ∪ ran {𝐴}〉) |
39 | 38 | adantl 275 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ V ∧ 𝐴 = 〈𝑥, ∪ ran {𝐴}〉) → ∩ ∩ 𝐴 = ∩ ∩ 〈𝑥, ∪ ran {𝐴}〉) |
40 | | op1stbg 4457 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ V ∧ ∪ ran {𝐴} ∈ V) → ∩ ∩ 〈𝑥, ∪ ran {𝐴}〉 = 𝑥) |
41 | 15, 28, 40 | sylancr 411 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ V → ∩ ∩ 〈𝑥, ∪ ran {𝐴}〉 = 𝑥) |
42 | 41 | adantr 274 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ V ∧ 𝐴 = 〈𝑥, ∪ ran {𝐴}〉) → ∩ ∩ 〈𝑥, ∪ ran {𝐴}〉 = 𝑥) |
43 | 39, 42 | eqtr2d 2199 |
. . . . . . . . 9
⊢ ((𝐴 ∈ V ∧ 𝐴 = 〈𝑥, ∪ ran {𝐴}〉) → 𝑥 = ∩
∩ 𝐴) |
44 | 43 | ex 114 |
. . . . . . . 8
⊢ (𝐴 ∈ V → (𝐴 = 〈𝑥, ∪ ran {𝐴}〉 → 𝑥 = ∩
∩ 𝐴)) |
45 | 44 | pm4.71rd 392 |
. . . . . . 7
⊢ (𝐴 ∈ V → (𝐴 = 〈𝑥, ∪ ran {𝐴}〉 ↔ (𝑥 = ∩
∩ 𝐴 ∧ 𝐴 = 〈𝑥, ∪ ran {𝐴}〉))) |
46 | 45 | anbi1d 461 |
. . . . . 6
⊢ (𝐴 ∈ V → ((𝐴 = 〈𝑥, ∪ ran {𝐴}〉 ∧ (𝑥 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶)) ↔ ((𝑥 = ∩ ∩ 𝐴
∧ 𝐴 = 〈𝑥, ∪
ran {𝐴}〉) ∧ (𝑥 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶)))) |
47 | | anass 399 |
. . . . . . 7
⊢ (((𝑥 = ∩
∩ 𝐴 ∧ 𝐴 = 〈𝑥, ∪ ran {𝐴}〉) ∧ (𝑥 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶)) ↔ (𝑥 = ∩ ∩ 𝐴
∧ (𝐴 = 〈𝑥, ∪
ran {𝐴}〉 ∧ (𝑥 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶)))) |
48 | 47 | a1i 9 |
. . . . . 6
⊢ (𝐴 ∈ V → (((𝑥 = ∩
∩ 𝐴 ∧ 𝐴 = 〈𝑥, ∪ ran {𝐴}〉) ∧ (𝑥 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶)) ↔ (𝑥 = ∩ ∩ 𝐴
∧ (𝐴 = 〈𝑥, ∪
ran {𝐴}〉 ∧ (𝑥 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶))))) |
49 | 36, 46, 48 | 3bitrd 213 |
. . . . 5
⊢ (𝐴 ∈ V → (∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ (𝑥 = ∩ ∩ 𝐴
∧ (𝐴 = 〈𝑥, ∪
ran {𝐴}〉 ∧ (𝑥 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶))))) |
50 | 49 | exbidv 1813 |
. . . 4
⊢ (𝐴 ∈ V → (∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑥(𝑥 = ∩ ∩ 𝐴
∧ (𝐴 = 〈𝑥, ∪
ran {𝐴}〉 ∧ (𝑥 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶))))) |
51 | 11, 50 | syl5bb 191 |
. . 3
⊢ (𝐴 ∈ V → (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥(𝑥 = ∩ ∩ 𝐴
∧ (𝐴 = 〈𝑥, ∪
ran {𝐴}〉 ∧ (𝑥 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶))))) |
52 | | eqvisset 2736 |
. . . . . 6
⊢ (𝑥 = ∩
∩ 𝐴 → ∩ ∩ 𝐴
∈ V) |
53 | 52 | adantr 274 |
. . . . 5
⊢ ((𝑥 = ∩
∩ 𝐴 ∧ (𝐴 = 〈𝑥, ∪ ran {𝐴}〉 ∧ (𝑥 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶))) → ∩ ∩ 𝐴 ∈ V) |
54 | 53 | exlimiv 1586 |
. . . 4
⊢
(∃𝑥(𝑥 = ∩
∩ 𝐴 ∧ (𝐴 = 〈𝑥, ∪ ran {𝐴}〉 ∧ (𝑥 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶))) → ∩ ∩ 𝐴 ∈ V) |
55 | 2 | ad2antrl 482 |
. . . 4
⊢ ((𝐴 = 〈∩ ∩ 𝐴, ∪ ran {𝐴}〉 ∧ (∩ ∩ 𝐴 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶)) → ∩ ∩ 𝐴 ∈ V) |
56 | | opeq1 3758 |
. . . . . . 7
⊢ (𝑥 = ∩
∩ 𝐴 → 〈𝑥, ∪ ran {𝐴}〉 = 〈∩ ∩ 𝐴, ∪ ran {𝐴}〉) |
57 | 56 | eqeq2d 2177 |
. . . . . 6
⊢ (𝑥 = ∩
∩ 𝐴 → (𝐴 = 〈𝑥, ∪ ran {𝐴}〉 ↔ 𝐴 = 〈∩ ∩ 𝐴,
∪ ran {𝐴}〉)) |
58 | | eleq1 2229 |
. . . . . . 7
⊢ (𝑥 = ∩
∩ 𝐴 → (𝑥 ∈ 𝐵 ↔ ∩ ∩ 𝐴
∈ 𝐵)) |
59 | 58 | anbi1d 461 |
. . . . . 6
⊢ (𝑥 = ∩
∩ 𝐴 → ((𝑥 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶) ↔ (∩ ∩ 𝐴 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶))) |
60 | 57, 59 | anbi12d 465 |
. . . . 5
⊢ (𝑥 = ∩
∩ 𝐴 → ((𝐴 = 〈𝑥, ∪ ran {𝐴}〉 ∧ (𝑥 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶)) ↔ (𝐴 = 〈∩ ∩ 𝐴,
∪ ran {𝐴}〉 ∧ (∩
∩ 𝐴 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶)))) |
61 | 60 | ceqsexgv 2855 |
. . . 4
⊢ (∩ ∩ 𝐴 ∈ V → (∃𝑥(𝑥 = ∩ ∩ 𝐴
∧ (𝐴 = 〈𝑥, ∪
ran {𝐴}〉 ∧ (𝑥 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶))) ↔ (𝐴 = 〈∩ ∩ 𝐴,
∪ ran {𝐴}〉 ∧ (∩
∩ 𝐴 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶)))) |
62 | 54, 55, 61 | pm5.21nii 694 |
. . 3
⊢
(∃𝑥(𝑥 = ∩
∩ 𝐴 ∧ (𝐴 = 〈𝑥, ∪ ran {𝐴}〉 ∧ (𝑥 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶))) ↔ (𝐴 = 〈∩ ∩ 𝐴,
∪ ran {𝐴}〉 ∧ (∩
∩ 𝐴 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶))) |
63 | 51, 62 | bitrdi 195 |
. 2
⊢ (𝐴 ∈ V → (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = 〈∩ ∩ 𝐴,
∪ ran {𝐴}〉 ∧ (∩
∩ 𝐴 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶)))) |
64 | 1, 10, 63 | pm5.21nii 694 |
1
⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = 〈∩ ∩ 𝐴,
∪ ran {𝐴}〉 ∧ (∩
∩ 𝐴 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶))) |