ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elxp5 GIF version

Theorem elxp5 5027
Description: Membership in a cross product requiring no quantifiers or dummy variables. Provides a slightly shorter version of elxp4 5026 when the double intersection does not create class existence problems (caused by int0 3785). (Contributed by NM, 1-Aug-2004.)
Assertion
Ref Expression
elxp5 (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = ⟨ 𝐴, ran {𝐴}⟩ ∧ ( 𝐴𝐵 ran {𝐴} ∈ 𝐶)))

Proof of Theorem elxp5
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2697 . 2 (𝐴 ∈ (𝐵 × 𝐶) → 𝐴 ∈ V)
2 elex 2697 . . . 4 ( 𝐴𝐵 𝐴 ∈ V)
3 elex 2697 . . . 4 ( ran {𝐴} ∈ 𝐶 ran {𝐴} ∈ V)
42, 3anim12i 336 . . 3 (( 𝐴𝐵 ran {𝐴} ∈ 𝐶) → ( 𝐴 ∈ V ∧ ran {𝐴} ∈ V))
5 opexg 4150 . . . . 5 (( 𝐴 ∈ V ∧ ran {𝐴} ∈ V) → ⟨ 𝐴, ran {𝐴}⟩ ∈ V)
65adantl 275 . . . 4 ((𝐴 = ⟨ 𝐴, ran {𝐴}⟩ ∧ ( 𝐴 ∈ V ∧ ran {𝐴} ∈ V)) → ⟨ 𝐴, ran {𝐴}⟩ ∈ V)
7 eleq1 2202 . . . . 5 (𝐴 = ⟨ 𝐴, ran {𝐴}⟩ → (𝐴 ∈ V ↔ ⟨ 𝐴, ran {𝐴}⟩ ∈ V))
87adantr 274 . . . 4 ((𝐴 = ⟨ 𝐴, ran {𝐴}⟩ ∧ ( 𝐴 ∈ V ∧ ran {𝐴} ∈ V)) → (𝐴 ∈ V ↔ ⟨ 𝐴, ran {𝐴}⟩ ∈ V))
96, 8mpbird 166 . . 3 ((𝐴 = ⟨ 𝐴, ran {𝐴}⟩ ∧ ( 𝐴 ∈ V ∧ ran {𝐴} ∈ V)) → 𝐴 ∈ V)
104, 9sylan2 284 . 2 ((𝐴 = ⟨ 𝐴, ran {𝐴}⟩ ∧ ( 𝐴𝐵 ran {𝐴} ∈ 𝐶)) → 𝐴 ∈ V)
11 elxp 4556 . . . 4 (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)))
12 sneq 3538 . . . . . . . . . . . . . 14 (𝐴 = ⟨𝑥, 𝑦⟩ → {𝐴} = {⟨𝑥, 𝑦⟩})
1312rneqd 4768 . . . . . . . . . . . . 13 (𝐴 = ⟨𝑥, 𝑦⟩ → ran {𝐴} = ran {⟨𝑥, 𝑦⟩})
1413unieqd 3747 . . . . . . . . . . . 12 (𝐴 = ⟨𝑥, 𝑦⟩ → ran {𝐴} = ran {⟨𝑥, 𝑦⟩})
15 vex 2689 . . . . . . . . . . . . 13 𝑥 ∈ V
16 vex 2689 . . . . . . . . . . . . 13 𝑦 ∈ V
1715, 16op2nda 5023 . . . . . . . . . . . 12 ran {⟨𝑥, 𝑦⟩} = 𝑦
1814, 17syl6req 2189 . . . . . . . . . . 11 (𝐴 = ⟨𝑥, 𝑦⟩ → 𝑦 = ran {𝐴})
1918pm4.71ri 389 . . . . . . . . . 10 (𝐴 = ⟨𝑥, 𝑦⟩ ↔ (𝑦 = ran {𝐴} ∧ 𝐴 = ⟨𝑥, 𝑦⟩))
2019anbi1i 453 . . . . . . . . 9 ((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)) ↔ ((𝑦 = ran {𝐴} ∧ 𝐴 = ⟨𝑥, 𝑦⟩) ∧ (𝑥𝐵𝑦𝐶)))
21 anass 398 . . . . . . . . 9 (((𝑦 = ran {𝐴} ∧ 𝐴 = ⟨𝑥, 𝑦⟩) ∧ (𝑥𝐵𝑦𝐶)) ↔ (𝑦 = ran {𝐴} ∧ (𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶))))
2220, 21bitri 183 . . . . . . . 8 ((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)) ↔ (𝑦 = ran {𝐴} ∧ (𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶))))
2322exbii 1584 . . . . . . 7 (∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)) ↔ ∃𝑦(𝑦 = ran {𝐴} ∧ (𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶))))
24 snexg 4108 . . . . . . . . . 10 (𝐴 ∈ V → {𝐴} ∈ V)
25 rnexg 4804 . . . . . . . . . 10 ({𝐴} ∈ V → ran {𝐴} ∈ V)
2624, 25syl 14 . . . . . . . . 9 (𝐴 ∈ V → ran {𝐴} ∈ V)
27 uniexg 4361 . . . . . . . . 9 (ran {𝐴} ∈ V → ran {𝐴} ∈ V)
2826, 27syl 14 . . . . . . . 8 (𝐴 ∈ V → ran {𝐴} ∈ V)
29 opeq2 3706 . . . . . . . . . . 11 (𝑦 = ran {𝐴} → ⟨𝑥, 𝑦⟩ = ⟨𝑥, ran {𝐴}⟩)
3029eqeq2d 2151 . . . . . . . . . 10 (𝑦 = ran {𝐴} → (𝐴 = ⟨𝑥, 𝑦⟩ ↔ 𝐴 = ⟨𝑥, ran {𝐴}⟩))
31 eleq1 2202 . . . . . . . . . . 11 (𝑦 = ran {𝐴} → (𝑦𝐶 ran {𝐴} ∈ 𝐶))
3231anbi2d 459 . . . . . . . . . 10 (𝑦 = ran {𝐴} → ((𝑥𝐵𝑦𝐶) ↔ (𝑥𝐵 ran {𝐴} ∈ 𝐶)))
3330, 32anbi12d 464 . . . . . . . . 9 (𝑦 = ran {𝐴} → ((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)) ↔ (𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶))))
3433ceqsexgv 2814 . . . . . . . 8 ( ran {𝐴} ∈ V → (∃𝑦(𝑦 = ran {𝐴} ∧ (𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶))) ↔ (𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶))))
3528, 34syl 14 . . . . . . 7 (𝐴 ∈ V → (∃𝑦(𝑦 = ran {𝐴} ∧ (𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶))) ↔ (𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶))))
3623, 35syl5bb 191 . . . . . 6 (𝐴 ∈ V → (∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)) ↔ (𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶))))
37 inteq 3774 . . . . . . . . . . . 12 (𝐴 = ⟨𝑥, ran {𝐴}⟩ → 𝐴 = 𝑥, ran {𝐴}⟩)
3837inteqd 3776 . . . . . . . . . . 11 (𝐴 = ⟨𝑥, ran {𝐴}⟩ → 𝐴 = 𝑥, ran {𝐴}⟩)
3938adantl 275 . . . . . . . . . 10 ((𝐴 ∈ V ∧ 𝐴 = ⟨𝑥, ran {𝐴}⟩) → 𝐴 = 𝑥, ran {𝐴}⟩)
40 op1stbg 4400 . . . . . . . . . . . 12 ((𝑥 ∈ V ∧ ran {𝐴} ∈ V) → 𝑥, ran {𝐴}⟩ = 𝑥)
4115, 28, 40sylancr 410 . . . . . . . . . . 11 (𝐴 ∈ V → 𝑥, ran {𝐴}⟩ = 𝑥)
4241adantr 274 . . . . . . . . . 10 ((𝐴 ∈ V ∧ 𝐴 = ⟨𝑥, ran {𝐴}⟩) → 𝑥, ran {𝐴}⟩ = 𝑥)
4339, 42eqtr2d 2173 . . . . . . . . 9 ((𝐴 ∈ V ∧ 𝐴 = ⟨𝑥, ran {𝐴}⟩) → 𝑥 = 𝐴)
4443ex 114 . . . . . . . 8 (𝐴 ∈ V → (𝐴 = ⟨𝑥, ran {𝐴}⟩ → 𝑥 = 𝐴))
4544pm4.71rd 391 . . . . . . 7 (𝐴 ∈ V → (𝐴 = ⟨𝑥, ran {𝐴}⟩ ↔ (𝑥 = 𝐴𝐴 = ⟨𝑥, ran {𝐴}⟩)))
4645anbi1d 460 . . . . . 6 (𝐴 ∈ V → ((𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶)) ↔ ((𝑥 = 𝐴𝐴 = ⟨𝑥, ran {𝐴}⟩) ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶))))
47 anass 398 . . . . . . 7 (((𝑥 = 𝐴𝐴 = ⟨𝑥, ran {𝐴}⟩) ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶)) ↔ (𝑥 = 𝐴 ∧ (𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶))))
4847a1i 9 . . . . . 6 (𝐴 ∈ V → (((𝑥 = 𝐴𝐴 = ⟨𝑥, ran {𝐴}⟩) ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶)) ↔ (𝑥 = 𝐴 ∧ (𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶)))))
4936, 46, 483bitrd 213 . . . . 5 (𝐴 ∈ V → (∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)) ↔ (𝑥 = 𝐴 ∧ (𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶)))))
5049exbidv 1797 . . . 4 (𝐴 ∈ V → (∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)) ↔ ∃𝑥(𝑥 = 𝐴 ∧ (𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶)))))
5111, 50syl5bb 191 . . 3 (𝐴 ∈ V → (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥(𝑥 = 𝐴 ∧ (𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶)))))
52 eqvisset 2696 . . . . . 6 (𝑥 = 𝐴 𝐴 ∈ V)
5352adantr 274 . . . . 5 ((𝑥 = 𝐴 ∧ (𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶))) → 𝐴 ∈ V)
5453exlimiv 1577 . . . 4 (∃𝑥(𝑥 = 𝐴 ∧ (𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶))) → 𝐴 ∈ V)
552ad2antrl 481 . . . 4 ((𝐴 = ⟨ 𝐴, ran {𝐴}⟩ ∧ ( 𝐴𝐵 ran {𝐴} ∈ 𝐶)) → 𝐴 ∈ V)
56 opeq1 3705 . . . . . . 7 (𝑥 = 𝐴 → ⟨𝑥, ran {𝐴}⟩ = ⟨ 𝐴, ran {𝐴}⟩)
5756eqeq2d 2151 . . . . . 6 (𝑥 = 𝐴 → (𝐴 = ⟨𝑥, ran {𝐴}⟩ ↔ 𝐴 = ⟨ 𝐴, ran {𝐴}⟩))
58 eleq1 2202 . . . . . . 7 (𝑥 = 𝐴 → (𝑥𝐵 𝐴𝐵))
5958anbi1d 460 . . . . . 6 (𝑥 = 𝐴 → ((𝑥𝐵 ran {𝐴} ∈ 𝐶) ↔ ( 𝐴𝐵 ran {𝐴} ∈ 𝐶)))
6057, 59anbi12d 464 . . . . 5 (𝑥 = 𝐴 → ((𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶)) ↔ (𝐴 = ⟨ 𝐴, ran {𝐴}⟩ ∧ ( 𝐴𝐵 ran {𝐴} ∈ 𝐶))))
6160ceqsexgv 2814 . . . 4 ( 𝐴 ∈ V → (∃𝑥(𝑥 = 𝐴 ∧ (𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶))) ↔ (𝐴 = ⟨ 𝐴, ran {𝐴}⟩ ∧ ( 𝐴𝐵 ran {𝐴} ∈ 𝐶))))
6254, 55, 61pm5.21nii 693 . . 3 (∃𝑥(𝑥 = 𝐴 ∧ (𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶))) ↔ (𝐴 = ⟨ 𝐴, ran {𝐴}⟩ ∧ ( 𝐴𝐵 ran {𝐴} ∈ 𝐶)))
6351, 62syl6bb 195 . 2 (𝐴 ∈ V → (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = ⟨ 𝐴, ran {𝐴}⟩ ∧ ( 𝐴𝐵 ran {𝐴} ∈ 𝐶))))
641, 10, 63pm5.21nii 693 1 (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = ⟨ 𝐴, ran {𝐴}⟩ ∧ ( 𝐴𝐵 ran {𝐴} ∈ 𝐶)))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104   = wceq 1331  wex 1468  wcel 1480  Vcvv 2686  {csn 3527  cop 3530   cuni 3736   cint 3771   × cxp 4537  ran crn 4540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-xp 4545  df-rel 4546  df-cnv 4547  df-dm 4549  df-rn 4550
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator