| Step | Hyp | Ref
 | Expression | 
| 1 |   | elex 2774 | 
. 2
⊢ (𝐴 ∈ (𝐵 × 𝐶) → 𝐴 ∈ V) | 
| 2 |   | elex 2774 | 
. . . 4
⊢ (∩ ∩ 𝐴 ∈ 𝐵 → ∩ ∩ 𝐴
∈ V) | 
| 3 |   | elex 2774 | 
. . . 4
⊢ (∪ ran {𝐴} ∈ 𝐶 → ∪ ran
{𝐴} ∈
V) | 
| 4 | 2, 3 | anim12i 338 | 
. . 3
⊢ ((∩ ∩ 𝐴 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶) → (∩ ∩ 𝐴 ∈ V ∧ ∪
ran {𝐴} ∈
V)) | 
| 5 |   | opexg 4261 | 
. . . . 5
⊢ ((∩ ∩ 𝐴 ∈ V ∧ ∪
ran {𝐴} ∈ V) →
〈∩ ∩ 𝐴, ∪
ran {𝐴}〉 ∈
V) | 
| 6 | 5 | adantl 277 | 
. . . 4
⊢ ((𝐴 = 〈∩ ∩ 𝐴, ∪ ran {𝐴}〉 ∧ (∩ ∩ 𝐴 ∈ V ∧ ∪
ran {𝐴} ∈ V)) →
〈∩ ∩ 𝐴, ∪
ran {𝐴}〉 ∈
V) | 
| 7 |   | eleq1 2259 | 
. . . . 5
⊢ (𝐴 = 〈∩ ∩ 𝐴, ∪ ran {𝐴}〉 → (𝐴 ∈ V ↔ 〈∩ ∩ 𝐴, ∪ ran {𝐴}〉 ∈
V)) | 
| 8 | 7 | adantr 276 | 
. . . 4
⊢ ((𝐴 = 〈∩ ∩ 𝐴, ∪ ran {𝐴}〉 ∧ (∩ ∩ 𝐴 ∈ V ∧ ∪
ran {𝐴} ∈ V)) →
(𝐴 ∈ V ↔
〈∩ ∩ 𝐴, ∪
ran {𝐴}〉 ∈
V)) | 
| 9 | 6, 8 | mpbird 167 | 
. . 3
⊢ ((𝐴 = 〈∩ ∩ 𝐴, ∪ ran {𝐴}〉 ∧ (∩ ∩ 𝐴 ∈ V ∧ ∪
ran {𝐴} ∈ V)) →
𝐴 ∈
V) | 
| 10 | 4, 9 | sylan2 286 | 
. 2
⊢ ((𝐴 = 〈∩ ∩ 𝐴, ∪ ran {𝐴}〉 ∧ (∩ ∩ 𝐴 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶)) → 𝐴 ∈ V) | 
| 11 |   | elxp 4680 | 
. . . 4
⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) | 
| 12 |   | sneq 3633 | 
. . . . . . . . . . . . . 14
⊢ (𝐴 = 〈𝑥, 𝑦〉 → {𝐴} = {〈𝑥, 𝑦〉}) | 
| 13 | 12 | rneqd 4895 | 
. . . . . . . . . . . . 13
⊢ (𝐴 = 〈𝑥, 𝑦〉 → ran {𝐴} = ran {〈𝑥, 𝑦〉}) | 
| 14 | 13 | unieqd 3850 | 
. . . . . . . . . . . 12
⊢ (𝐴 = 〈𝑥, 𝑦〉 → ∪
ran {𝐴} = ∪ ran {〈𝑥, 𝑦〉}) | 
| 15 |   | vex 2766 | 
. . . . . . . . . . . . 13
⊢ 𝑥 ∈ V | 
| 16 |   | vex 2766 | 
. . . . . . . . . . . . 13
⊢ 𝑦 ∈ V | 
| 17 | 15, 16 | op2nda 5154 | 
. . . . . . . . . . . 12
⊢ ∪ ran {〈𝑥, 𝑦〉} = 𝑦 | 
| 18 | 14, 17 | eqtr2di 2246 | 
. . . . . . . . . . 11
⊢ (𝐴 = 〈𝑥, 𝑦〉 → 𝑦 = ∪ ran {𝐴}) | 
| 19 | 18 | pm4.71ri 392 | 
. . . . . . . . . 10
⊢ (𝐴 = 〈𝑥, 𝑦〉 ↔ (𝑦 = ∪ ran {𝐴} ∧ 𝐴 = 〈𝑥, 𝑦〉)) | 
| 20 | 19 | anbi1i 458 | 
. . . . . . . . 9
⊢ ((𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ((𝑦 = ∪ ran {𝐴} ∧ 𝐴 = 〈𝑥, 𝑦〉) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) | 
| 21 |   | anass 401 | 
. . . . . . . . 9
⊢ (((𝑦 = ∪
ran {𝐴} ∧ 𝐴 = 〈𝑥, 𝑦〉) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ (𝑦 = ∪ ran {𝐴} ∧ (𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)))) | 
| 22 | 20, 21 | bitri 184 | 
. . . . . . . 8
⊢ ((𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ (𝑦 = ∪ ran {𝐴} ∧ (𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)))) | 
| 23 | 22 | exbii 1619 | 
. . . . . . 7
⊢
(∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑦(𝑦 = ∪ ran {𝐴} ∧ (𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)))) | 
| 24 |   | snexg 4217 | 
. . . . . . . . . 10
⊢ (𝐴 ∈ V → {𝐴} ∈ V) | 
| 25 |   | rnexg 4931 | 
. . . . . . . . . 10
⊢ ({𝐴} ∈ V → ran {𝐴} ∈ V) | 
| 26 | 24, 25 | syl 14 | 
. . . . . . . . 9
⊢ (𝐴 ∈ V → ran {𝐴} ∈ V) | 
| 27 |   | uniexg 4474 | 
. . . . . . . . 9
⊢ (ran
{𝐴} ∈ V → ∪ ran {𝐴} ∈ V) | 
| 28 | 26, 27 | syl 14 | 
. . . . . . . 8
⊢ (𝐴 ∈ V → ∪ ran {𝐴} ∈ V) | 
| 29 |   | opeq2 3809 | 
. . . . . . . . . . 11
⊢ (𝑦 = ∪
ran {𝐴} → 〈𝑥, 𝑦〉 = 〈𝑥, ∪ ran {𝐴}〉) | 
| 30 | 29 | eqeq2d 2208 | 
. . . . . . . . . 10
⊢ (𝑦 = ∪
ran {𝐴} → (𝐴 = 〈𝑥, 𝑦〉 ↔ 𝐴 = 〈𝑥, ∪ ran {𝐴}〉)) | 
| 31 |   | eleq1 2259 | 
. . . . . . . . . . 11
⊢ (𝑦 = ∪
ran {𝐴} → (𝑦 ∈ 𝐶 ↔ ∪ ran
{𝐴} ∈ 𝐶)) | 
| 32 | 31 | anbi2d 464 | 
. . . . . . . . . 10
⊢ (𝑦 = ∪
ran {𝐴} → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶))) | 
| 33 | 30, 32 | anbi12d 473 | 
. . . . . . . . 9
⊢ (𝑦 = ∪
ran {𝐴} → ((𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ (𝐴 = 〈𝑥, ∪ ran {𝐴}〉 ∧ (𝑥 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶)))) | 
| 34 | 33 | ceqsexgv 2893 | 
. . . . . . . 8
⊢ (∪ ran {𝐴} ∈ V → (∃𝑦(𝑦 = ∪ ran {𝐴} ∧ (𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) ↔ (𝐴 = 〈𝑥, ∪ ran {𝐴}〉 ∧ (𝑥 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶)))) | 
| 35 | 28, 34 | syl 14 | 
. . . . . . 7
⊢ (𝐴 ∈ V → (∃𝑦(𝑦 = ∪ ran {𝐴} ∧ (𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) ↔ (𝐴 = 〈𝑥, ∪ ran {𝐴}〉 ∧ (𝑥 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶)))) | 
| 36 | 23, 35 | bitrid 192 | 
. . . . . 6
⊢ (𝐴 ∈ V → (∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ (𝐴 = 〈𝑥, ∪ ran {𝐴}〉 ∧ (𝑥 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶)))) | 
| 37 |   | inteq 3877 | 
. . . . . . . . . . . 12
⊢ (𝐴 = 〈𝑥, ∪ ran {𝐴}〉 → ∩ 𝐴 =
∩ 〈𝑥, ∪ ran {𝐴}〉) | 
| 38 | 37 | inteqd 3879 | 
. . . . . . . . . . 11
⊢ (𝐴 = 〈𝑥, ∪ ran {𝐴}〉 → ∩ ∩ 𝐴 = ∩ ∩ 〈𝑥, ∪ ran {𝐴}〉) | 
| 39 | 38 | adantl 277 | 
. . . . . . . . . 10
⊢ ((𝐴 ∈ V ∧ 𝐴 = 〈𝑥, ∪ ran {𝐴}〉) → ∩ ∩ 𝐴 = ∩ ∩ 〈𝑥, ∪ ran {𝐴}〉) | 
| 40 |   | op1stbg 4514 | 
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ V ∧ ∪ ran {𝐴} ∈ V) → ∩ ∩ 〈𝑥, ∪ ran {𝐴}〉 = 𝑥) | 
| 41 | 15, 28, 40 | sylancr 414 | 
. . . . . . . . . . 11
⊢ (𝐴 ∈ V → ∩ ∩ 〈𝑥, ∪ ran {𝐴}〉 = 𝑥) | 
| 42 | 41 | adantr 276 | 
. . . . . . . . . 10
⊢ ((𝐴 ∈ V ∧ 𝐴 = 〈𝑥, ∪ ran {𝐴}〉) → ∩ ∩ 〈𝑥, ∪ ran {𝐴}〉 = 𝑥) | 
| 43 | 39, 42 | eqtr2d 2230 | 
. . . . . . . . 9
⊢ ((𝐴 ∈ V ∧ 𝐴 = 〈𝑥, ∪ ran {𝐴}〉) → 𝑥 = ∩
∩ 𝐴) | 
| 44 | 43 | ex 115 | 
. . . . . . . 8
⊢ (𝐴 ∈ V → (𝐴 = 〈𝑥, ∪ ran {𝐴}〉 → 𝑥 = ∩
∩ 𝐴)) | 
| 45 | 44 | pm4.71rd 394 | 
. . . . . . 7
⊢ (𝐴 ∈ V → (𝐴 = 〈𝑥, ∪ ran {𝐴}〉 ↔ (𝑥 = ∩
∩ 𝐴 ∧ 𝐴 = 〈𝑥, ∪ ran {𝐴}〉))) | 
| 46 | 45 | anbi1d 465 | 
. . . . . 6
⊢ (𝐴 ∈ V → ((𝐴 = 〈𝑥, ∪ ran {𝐴}〉 ∧ (𝑥 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶)) ↔ ((𝑥 = ∩ ∩ 𝐴
∧ 𝐴 = 〈𝑥, ∪
ran {𝐴}〉) ∧ (𝑥 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶)))) | 
| 47 |   | anass 401 | 
. . . . . . 7
⊢ (((𝑥 = ∩
∩ 𝐴 ∧ 𝐴 = 〈𝑥, ∪ ran {𝐴}〉) ∧ (𝑥 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶)) ↔ (𝑥 = ∩ ∩ 𝐴
∧ (𝐴 = 〈𝑥, ∪
ran {𝐴}〉 ∧ (𝑥 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶)))) | 
| 48 | 47 | a1i 9 | 
. . . . . 6
⊢ (𝐴 ∈ V → (((𝑥 = ∩
∩ 𝐴 ∧ 𝐴 = 〈𝑥, ∪ ran {𝐴}〉) ∧ (𝑥 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶)) ↔ (𝑥 = ∩ ∩ 𝐴
∧ (𝐴 = 〈𝑥, ∪
ran {𝐴}〉 ∧ (𝑥 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶))))) | 
| 49 | 36, 46, 48 | 3bitrd 214 | 
. . . . 5
⊢ (𝐴 ∈ V → (∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ (𝑥 = ∩ ∩ 𝐴
∧ (𝐴 = 〈𝑥, ∪
ran {𝐴}〉 ∧ (𝑥 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶))))) | 
| 50 | 49 | exbidv 1839 | 
. . . 4
⊢ (𝐴 ∈ V → (∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑥(𝑥 = ∩ ∩ 𝐴
∧ (𝐴 = 〈𝑥, ∪
ran {𝐴}〉 ∧ (𝑥 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶))))) | 
| 51 | 11, 50 | bitrid 192 | 
. . 3
⊢ (𝐴 ∈ V → (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥(𝑥 = ∩ ∩ 𝐴
∧ (𝐴 = 〈𝑥, ∪
ran {𝐴}〉 ∧ (𝑥 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶))))) | 
| 52 |   | eqvisset 2773 | 
. . . . . 6
⊢ (𝑥 = ∩
∩ 𝐴 → ∩ ∩ 𝐴
∈ V) | 
| 53 | 52 | adantr 276 | 
. . . . 5
⊢ ((𝑥 = ∩
∩ 𝐴 ∧ (𝐴 = 〈𝑥, ∪ ran {𝐴}〉 ∧ (𝑥 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶))) → ∩ ∩ 𝐴 ∈ V) | 
| 54 | 53 | exlimiv 1612 | 
. . . 4
⊢
(∃𝑥(𝑥 = ∩
∩ 𝐴 ∧ (𝐴 = 〈𝑥, ∪ ran {𝐴}〉 ∧ (𝑥 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶))) → ∩ ∩ 𝐴 ∈ V) | 
| 55 | 2 | ad2antrl 490 | 
. . . 4
⊢ ((𝐴 = 〈∩ ∩ 𝐴, ∪ ran {𝐴}〉 ∧ (∩ ∩ 𝐴 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶)) → ∩ ∩ 𝐴 ∈ V) | 
| 56 |   | opeq1 3808 | 
. . . . . . 7
⊢ (𝑥 = ∩
∩ 𝐴 → 〈𝑥, ∪ ran {𝐴}〉 = 〈∩ ∩ 𝐴, ∪ ran {𝐴}〉) | 
| 57 | 56 | eqeq2d 2208 | 
. . . . . 6
⊢ (𝑥 = ∩
∩ 𝐴 → (𝐴 = 〈𝑥, ∪ ran {𝐴}〉 ↔ 𝐴 = 〈∩ ∩ 𝐴,
∪ ran {𝐴}〉)) | 
| 58 |   | eleq1 2259 | 
. . . . . . 7
⊢ (𝑥 = ∩
∩ 𝐴 → (𝑥 ∈ 𝐵 ↔ ∩ ∩ 𝐴
∈ 𝐵)) | 
| 59 | 58 | anbi1d 465 | 
. . . . . 6
⊢ (𝑥 = ∩
∩ 𝐴 → ((𝑥 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶) ↔ (∩ ∩ 𝐴 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶))) | 
| 60 | 57, 59 | anbi12d 473 | 
. . . . 5
⊢ (𝑥 = ∩
∩ 𝐴 → ((𝐴 = 〈𝑥, ∪ ran {𝐴}〉 ∧ (𝑥 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶)) ↔ (𝐴 = 〈∩ ∩ 𝐴,
∪ ran {𝐴}〉 ∧ (∩
∩ 𝐴 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶)))) | 
| 61 | 60 | ceqsexgv 2893 | 
. . . 4
⊢ (∩ ∩ 𝐴 ∈ V → (∃𝑥(𝑥 = ∩ ∩ 𝐴
∧ (𝐴 = 〈𝑥, ∪
ran {𝐴}〉 ∧ (𝑥 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶))) ↔ (𝐴 = 〈∩ ∩ 𝐴,
∪ ran {𝐴}〉 ∧ (∩
∩ 𝐴 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶)))) | 
| 62 | 54, 55, 61 | pm5.21nii 705 | 
. . 3
⊢
(∃𝑥(𝑥 = ∩
∩ 𝐴 ∧ (𝐴 = 〈𝑥, ∪ ran {𝐴}〉 ∧ (𝑥 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶))) ↔ (𝐴 = 〈∩ ∩ 𝐴,
∪ ran {𝐴}〉 ∧ (∩
∩ 𝐴 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶))) | 
| 63 | 51, 62 | bitrdi 196 | 
. 2
⊢ (𝐴 ∈ V → (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = 〈∩ ∩ 𝐴,
∪ ran {𝐴}〉 ∧ (∩
∩ 𝐴 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶)))) | 
| 64 | 1, 10, 63 | pm5.21nii 705 | 
1
⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = 〈∩ ∩ 𝐴,
∪ ran {𝐴}〉 ∧ (∩
∩ 𝐴 ∈ 𝐵 ∧ ∪ ran
{𝐴} ∈ 𝐶))) |