ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  moan GIF version

Theorem moan 2127
Description: "At most one" is still the case when a conjunct is added. (Contributed by NM, 22-Apr-1995.)
Assertion
Ref Expression
moan (∃*𝑥𝜑 → ∃*𝑥(𝜓𝜑))

Proof of Theorem moan
StepHypRef Expression
1 simpr 110 . 2 ((𝜓𝜑) → 𝜑)
21moimi 2123 1 (∃*𝑥𝜑 → ∃*𝑥(𝜓𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  ∃*wmo 2058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561
This theorem depends on definitions:  df-bi 117  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061
This theorem is referenced by:  moani  2128  mooran1  2130  mormo  2728  rmoan  2983
  Copyright terms: Public domain W3C validator