ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  moan GIF version

Theorem moan 2114
Description: "At most one" is still the case when a conjunct is added. (Contributed by NM, 22-Apr-1995.)
Assertion
Ref Expression
moan (∃*𝑥𝜑 → ∃*𝑥(𝜓𝜑))

Proof of Theorem moan
StepHypRef Expression
1 simpr 110 . 2 ((𝜓𝜑) → 𝜑)
21moimi 2110 1 (∃*𝑥𝜑 → ∃*𝑥(𝜓𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  ∃*wmo 2046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049
This theorem is referenced by:  moani  2115  mooran1  2117  mormo  2713  rmoan  2964
  Copyright terms: Public domain W3C validator