ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  moan GIF version

Theorem moan 2083
Description: "At most one" is still the case when a conjunct is added. (Contributed by NM, 22-Apr-1995.)
Assertion
Ref Expression
moan (∃*𝑥𝜑 → ∃*𝑥(𝜓𝜑))

Proof of Theorem moan
StepHypRef Expression
1 simpr 109 . 2 ((𝜓𝜑) → 𝜑)
21moimi 2079 1 (∃*𝑥𝜑 → ∃*𝑥(𝜓𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  ∃*wmo 2015
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018
This theorem is referenced by:  moani  2084  mooran1  2086  mormo  2677  rmoan  2926
  Copyright terms: Public domain W3C validator