ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subhalfnqq GIF version

Theorem subhalfnqq 7246
Description: There is a number which is less than half of any positive fraction. The case where 𝐴 is one is Lemma 11.4 of [BauerTaylor], p. 50, and they use the word "approximate half" for such a number (since there may be constructions, for some structures other than the rationals themselves, which rely on such an approximate half but do not require division by two as seen at halfnqq 7242). (Contributed by Jim Kingdon, 25-Nov-2019.)
Assertion
Ref Expression
subhalfnqq (𝐴Q → ∃𝑥Q (𝑥 +Q 𝑥) <Q 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem subhalfnqq
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 halfnqq 7242 . . . . . 6 (𝐴Q → ∃𝑦Q (𝑦 +Q 𝑦) = 𝐴)
2 df-rex 2423 . . . . . . 7 (∃𝑦Q (𝑦 +Q 𝑦) = 𝐴 ↔ ∃𝑦(𝑦Q ∧ (𝑦 +Q 𝑦) = 𝐴))
3 halfnqq 7242 . . . . . . . . . 10 (𝑦Q → ∃𝑥Q (𝑥 +Q 𝑥) = 𝑦)
43adantr 274 . . . . . . . . 9 ((𝑦Q ∧ (𝑦 +Q 𝑦) = 𝐴) → ∃𝑥Q (𝑥 +Q 𝑥) = 𝑦)
54ancli 321 . . . . . . . 8 ((𝑦Q ∧ (𝑦 +Q 𝑦) = 𝐴) → ((𝑦Q ∧ (𝑦 +Q 𝑦) = 𝐴) ∧ ∃𝑥Q (𝑥 +Q 𝑥) = 𝑦))
65eximi 1580 . . . . . . 7 (∃𝑦(𝑦Q ∧ (𝑦 +Q 𝑦) = 𝐴) → ∃𝑦((𝑦Q ∧ (𝑦 +Q 𝑦) = 𝐴) ∧ ∃𝑥Q (𝑥 +Q 𝑥) = 𝑦))
72, 6sylbi 120 . . . . . 6 (∃𝑦Q (𝑦 +Q 𝑦) = 𝐴 → ∃𝑦((𝑦Q ∧ (𝑦 +Q 𝑦) = 𝐴) ∧ ∃𝑥Q (𝑥 +Q 𝑥) = 𝑦))
81, 7syl 14 . . . . 5 (𝐴Q → ∃𝑦((𝑦Q ∧ (𝑦 +Q 𝑦) = 𝐴) ∧ ∃𝑥Q (𝑥 +Q 𝑥) = 𝑦))
9 df-rex 2423 . . . . . . 7 (∃𝑥Q (𝑥 +Q 𝑥) = 𝑦 ↔ ∃𝑥(𝑥Q ∧ (𝑥 +Q 𝑥) = 𝑦))
109anbi2i 453 . . . . . 6 (((𝑦Q ∧ (𝑦 +Q 𝑦) = 𝐴) ∧ ∃𝑥Q (𝑥 +Q 𝑥) = 𝑦) ↔ ((𝑦Q ∧ (𝑦 +Q 𝑦) = 𝐴) ∧ ∃𝑥(𝑥Q ∧ (𝑥 +Q 𝑥) = 𝑦)))
1110exbii 1585 . . . . 5 (∃𝑦((𝑦Q ∧ (𝑦 +Q 𝑦) = 𝐴) ∧ ∃𝑥Q (𝑥 +Q 𝑥) = 𝑦) ↔ ∃𝑦((𝑦Q ∧ (𝑦 +Q 𝑦) = 𝐴) ∧ ∃𝑥(𝑥Q ∧ (𝑥 +Q 𝑥) = 𝑦)))
128, 11sylib 121 . . . 4 (𝐴Q → ∃𝑦((𝑦Q ∧ (𝑦 +Q 𝑦) = 𝐴) ∧ ∃𝑥(𝑥Q ∧ (𝑥 +Q 𝑥) = 𝑦)))
13 exdistr 1882 . . . 4 (∃𝑦𝑥((𝑦Q ∧ (𝑦 +Q 𝑦) = 𝐴) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) = 𝑦)) ↔ ∃𝑦((𝑦Q ∧ (𝑦 +Q 𝑦) = 𝐴) ∧ ∃𝑥(𝑥Q ∧ (𝑥 +Q 𝑥) = 𝑦)))
1412, 13sylibr 133 . . 3 (𝐴Q → ∃𝑦𝑥((𝑦Q ∧ (𝑦 +Q 𝑦) = 𝐴) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) = 𝑦)))
15 simprl 521 . . . . . 6 (((𝑦Q ∧ (𝑦 +Q 𝑦) = 𝐴) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) = 𝑦)) → 𝑥Q)
16 simpll 519 . . . . . . . . 9 (((𝑦Q ∧ (𝑦 +Q 𝑦) = 𝐴) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) = 𝑦)) → 𝑦Q)
17 ltaddnq 7239 . . . . . . . . 9 ((𝑦Q𝑦Q) → 𝑦 <Q (𝑦 +Q 𝑦))
1816, 16, 17syl2anc 409 . . . . . . . 8 (((𝑦Q ∧ (𝑦 +Q 𝑦) = 𝐴) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) = 𝑦)) → 𝑦 <Q (𝑦 +Q 𝑦))
19 breq2 3941 . . . . . . . . 9 ((𝑦 +Q 𝑦) = 𝐴 → (𝑦 <Q (𝑦 +Q 𝑦) ↔ 𝑦 <Q 𝐴))
2019ad2antlr 481 . . . . . . . 8 (((𝑦Q ∧ (𝑦 +Q 𝑦) = 𝐴) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) = 𝑦)) → (𝑦 <Q (𝑦 +Q 𝑦) ↔ 𝑦 <Q 𝐴))
2118, 20mpbid 146 . . . . . . 7 (((𝑦Q ∧ (𝑦 +Q 𝑦) = 𝐴) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) = 𝑦)) → 𝑦 <Q 𝐴)
22 breq1 3940 . . . . . . . 8 ((𝑥 +Q 𝑥) = 𝑦 → ((𝑥 +Q 𝑥) <Q 𝐴𝑦 <Q 𝐴))
2322ad2antll 483 . . . . . . 7 (((𝑦Q ∧ (𝑦 +Q 𝑦) = 𝐴) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) = 𝑦)) → ((𝑥 +Q 𝑥) <Q 𝐴𝑦 <Q 𝐴))
2421, 23mpbird 166 . . . . . 6 (((𝑦Q ∧ (𝑦 +Q 𝑦) = 𝐴) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) = 𝑦)) → (𝑥 +Q 𝑥) <Q 𝐴)
2515, 24jca 304 . . . . 5 (((𝑦Q ∧ (𝑦 +Q 𝑦) = 𝐴) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) = 𝑦)) → (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝐴))
2625eximi 1580 . . . 4 (∃𝑥((𝑦Q ∧ (𝑦 +Q 𝑦) = 𝐴) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) = 𝑦)) → ∃𝑥(𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝐴))
2726exlimiv 1578 . . 3 (∃𝑦𝑥((𝑦Q ∧ (𝑦 +Q 𝑦) = 𝐴) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) = 𝑦)) → ∃𝑥(𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝐴))
2814, 27syl 14 . 2 (𝐴Q → ∃𝑥(𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝐴))
29 df-rex 2423 . 2 (∃𝑥Q (𝑥 +Q 𝑥) <Q 𝐴 ↔ ∃𝑥(𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝐴))
3028, 29sylibr 133 1 (𝐴Q → ∃𝑥Q (𝑥 +Q 𝑥) <Q 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1332  wex 1469  wcel 1481  wrex 2418   class class class wbr 3937  (class class class)co 5782  Qcnq 7112   +Q cplq 7114   <Q cltq 7117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-eprel 4219  df-id 4223  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-1o 6321  df-oadd 6325  df-omul 6326  df-er 6437  df-ec 6439  df-qs 6443  df-ni 7136  df-pli 7137  df-mi 7138  df-lti 7139  df-plpq 7176  df-mpq 7177  df-enq 7179  df-nqqs 7180  df-plqqs 7181  df-mqqs 7182  df-1nqqs 7183  df-rq 7184  df-ltnqqs 7185
This theorem is referenced by:  prarloc  7335  cauappcvgprlemloc  7484  caucvgprlemloc  7507  caucvgprprlemml  7526  caucvgprprlemloc  7535
  Copyright terms: Public domain W3C validator