| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbexyz | GIF version | ||
| Description: Move existential quantifier in and out of substitution. Identical to sbex 2023 except that it has an additional disjoint variable condition on 𝑦, 𝑧. (Contributed by Jim Kingdon, 29-Dec-2017.) |
| Ref | Expression |
|---|---|
| sbexyz | ⊢ ([𝑧 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥[𝑧 / 𝑦]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sb5 1902 | . . 3 ⊢ ([𝑧 / 𝑦]∃𝑥𝜑 ↔ ∃𝑦(𝑦 = 𝑧 ∧ ∃𝑥𝜑)) | |
| 2 | exdistr 1924 | . . 3 ⊢ (∃𝑦∃𝑥(𝑦 = 𝑧 ∧ 𝜑) ↔ ∃𝑦(𝑦 = 𝑧 ∧ ∃𝑥𝜑)) | |
| 3 | excom 1678 | . . 3 ⊢ (∃𝑦∃𝑥(𝑦 = 𝑧 ∧ 𝜑) ↔ ∃𝑥∃𝑦(𝑦 = 𝑧 ∧ 𝜑)) | |
| 4 | 1, 2, 3 | 3bitr2i 208 | . 2 ⊢ ([𝑧 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥∃𝑦(𝑦 = 𝑧 ∧ 𝜑)) |
| 5 | sb5 1902 | . . 3 ⊢ ([𝑧 / 𝑦]𝜑 ↔ ∃𝑦(𝑦 = 𝑧 ∧ 𝜑)) | |
| 6 | 5 | exbii 1619 | . 2 ⊢ (∃𝑥[𝑧 / 𝑦]𝜑 ↔ ∃𝑥∃𝑦(𝑦 = 𝑧 ∧ 𝜑)) |
| 7 | 4, 6 | bitr4i 187 | 1 ⊢ ([𝑧 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥[𝑧 / 𝑦]𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∃wex 1506 [wsb 1776 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 df-sb 1777 |
| This theorem is referenced by: sbex 2023 |
| Copyright terms: Public domain | W3C validator |