ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbexyz GIF version

Theorem sbexyz 1991
Description: Move existential quantifier in and out of substitution. Identical to sbex 1992 except that it has an additional disjoint variable condition on 𝑦, 𝑧. (Contributed by Jim Kingdon, 29-Dec-2017.)
Assertion
Ref Expression
sbexyz ([𝑧 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥[𝑧 / 𝑦]𝜑)
Distinct variable group:   𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem sbexyz
StepHypRef Expression
1 sb5 1875 . . 3 ([𝑧 / 𝑦]∃𝑥𝜑 ↔ ∃𝑦(𝑦 = 𝑧 ∧ ∃𝑥𝜑))
2 exdistr 1897 . . 3 (∃𝑦𝑥(𝑦 = 𝑧𝜑) ↔ ∃𝑦(𝑦 = 𝑧 ∧ ∃𝑥𝜑))
3 excom 1652 . . 3 (∃𝑦𝑥(𝑦 = 𝑧𝜑) ↔ ∃𝑥𝑦(𝑦 = 𝑧𝜑))
41, 2, 33bitr2i 207 . 2 ([𝑧 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥𝑦(𝑦 = 𝑧𝜑))
5 sb5 1875 . . 3 ([𝑧 / 𝑦]𝜑 ↔ ∃𝑦(𝑦 = 𝑧𝜑))
65exbii 1593 . 2 (∃𝑥[𝑧 / 𝑦]𝜑 ↔ ∃𝑥𝑦(𝑦 = 𝑧𝜑))
74, 6bitr4i 186 1 ([𝑧 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥[𝑧 / 𝑦]𝜑)
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  wex 1480  [wsb 1750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522
This theorem depends on definitions:  df-bi 116  df-sb 1751
This theorem is referenced by:  sbex  1992
  Copyright terms: Public domain W3C validator