Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbexyz | GIF version |
Description: Move existential quantifier in and out of substitution. Identical to sbex 1992 except that it has an additional disjoint variable condition on 𝑦, 𝑧. (Contributed by Jim Kingdon, 29-Dec-2017.) |
Ref | Expression |
---|---|
sbexyz | ⊢ ([𝑧 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥[𝑧 / 𝑦]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb5 1875 | . . 3 ⊢ ([𝑧 / 𝑦]∃𝑥𝜑 ↔ ∃𝑦(𝑦 = 𝑧 ∧ ∃𝑥𝜑)) | |
2 | exdistr 1897 | . . 3 ⊢ (∃𝑦∃𝑥(𝑦 = 𝑧 ∧ 𝜑) ↔ ∃𝑦(𝑦 = 𝑧 ∧ ∃𝑥𝜑)) | |
3 | excom 1652 | . . 3 ⊢ (∃𝑦∃𝑥(𝑦 = 𝑧 ∧ 𝜑) ↔ ∃𝑥∃𝑦(𝑦 = 𝑧 ∧ 𝜑)) | |
4 | 1, 2, 3 | 3bitr2i 207 | . 2 ⊢ ([𝑧 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥∃𝑦(𝑦 = 𝑧 ∧ 𝜑)) |
5 | sb5 1875 | . . 3 ⊢ ([𝑧 / 𝑦]𝜑 ↔ ∃𝑦(𝑦 = 𝑧 ∧ 𝜑)) | |
6 | 5 | exbii 1593 | . 2 ⊢ (∃𝑥[𝑧 / 𝑦]𝜑 ↔ ∃𝑥∃𝑦(𝑦 = 𝑧 ∧ 𝜑)) |
7 | 4, 6 | bitr4i 186 | 1 ⊢ ([𝑧 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥[𝑧 / 𝑦]𝜑) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 ∃wex 1480 [wsb 1750 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 df-sb 1751 |
This theorem is referenced by: sbex 1992 |
Copyright terms: Public domain | W3C validator |