ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbexyz GIF version

Theorem sbexyz 1996
Description: Move existential quantifier in and out of substitution. Identical to sbex 1997 except that it has an additional disjoint variable condition on 𝑦, 𝑧. (Contributed by Jim Kingdon, 29-Dec-2017.)
Assertion
Ref Expression
sbexyz ([𝑧 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥[𝑧 / 𝑦]𝜑)
Distinct variable group:   𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem sbexyz
StepHypRef Expression
1 sb5 1880 . . 3 ([𝑧 / 𝑦]∃𝑥𝜑 ↔ ∃𝑦(𝑦 = 𝑧 ∧ ∃𝑥𝜑))
2 exdistr 1902 . . 3 (∃𝑦𝑥(𝑦 = 𝑧𝜑) ↔ ∃𝑦(𝑦 = 𝑧 ∧ ∃𝑥𝜑))
3 excom 1657 . . 3 (∃𝑦𝑥(𝑦 = 𝑧𝜑) ↔ ∃𝑥𝑦(𝑦 = 𝑧𝜑))
41, 2, 33bitr2i 207 . 2 ([𝑧 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥𝑦(𝑦 = 𝑧𝜑))
5 sb5 1880 . . 3 ([𝑧 / 𝑦]𝜑 ↔ ∃𝑦(𝑦 = 𝑧𝜑))
65exbii 1598 . 2 (∃𝑥[𝑧 / 𝑦]𝜑 ↔ ∃𝑥𝑦(𝑦 = 𝑧𝜑))
74, 6bitr4i 186 1 ([𝑧 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥[𝑧 / 𝑦]𝜑)
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  wex 1485  [wsb 1755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-11 1499  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527
This theorem depends on definitions:  df-bi 116  df-sb 1756
This theorem is referenced by:  sbex  1997
  Copyright terms: Public domain W3C validator