ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coass GIF version

Theorem coass 5057
Description: Associative law for class composition. Theorem 27 of [Suppes] p. 64. Also Exercise 21 of [Enderton] p. 53. Interestingly, this law holds for any classes whatsoever, not just functions or even relations. (Contributed by NM, 27-Jan-1997.)
Assertion
Ref Expression
coass ((𝐴𝐵) ∘ 𝐶) = (𝐴 ∘ (𝐵𝐶))

Proof of Theorem coass
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relco 5037 . 2 Rel ((𝐴𝐵) ∘ 𝐶)
2 relco 5037 . 2 Rel (𝐴 ∘ (𝐵𝐶))
3 excom 1642 . . . 4 (∃𝑧𝑤(𝑥𝐶𝑧 ∧ (𝑧𝐵𝑤𝑤𝐴𝑦)) ↔ ∃𝑤𝑧(𝑥𝐶𝑧 ∧ (𝑧𝐵𝑤𝑤𝐴𝑦)))
4 anass 398 . . . . 5 (((𝑥𝐶𝑧𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦) ↔ (𝑥𝐶𝑧 ∧ (𝑧𝐵𝑤𝑤𝐴𝑦)))
542exbii 1585 . . . 4 (∃𝑤𝑧((𝑥𝐶𝑧𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦) ↔ ∃𝑤𝑧(𝑥𝐶𝑧 ∧ (𝑧𝐵𝑤𝑤𝐴𝑦)))
63, 5bitr4i 186 . . 3 (∃𝑧𝑤(𝑥𝐶𝑧 ∧ (𝑧𝐵𝑤𝑤𝐴𝑦)) ↔ ∃𝑤𝑧((𝑥𝐶𝑧𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦))
7 vex 2689 . . . . . . 7 𝑧 ∈ V
8 vex 2689 . . . . . . 7 𝑦 ∈ V
97, 8brco 4710 . . . . . 6 (𝑧(𝐴𝐵)𝑦 ↔ ∃𝑤(𝑧𝐵𝑤𝑤𝐴𝑦))
109anbi2i 452 . . . . 5 ((𝑥𝐶𝑧𝑧(𝐴𝐵)𝑦) ↔ (𝑥𝐶𝑧 ∧ ∃𝑤(𝑧𝐵𝑤𝑤𝐴𝑦)))
1110exbii 1584 . . . 4 (∃𝑧(𝑥𝐶𝑧𝑧(𝐴𝐵)𝑦) ↔ ∃𝑧(𝑥𝐶𝑧 ∧ ∃𝑤(𝑧𝐵𝑤𝑤𝐴𝑦)))
12 vex 2689 . . . . 5 𝑥 ∈ V
1312, 8opelco 4711 . . . 4 (⟨𝑥, 𝑦⟩ ∈ ((𝐴𝐵) ∘ 𝐶) ↔ ∃𝑧(𝑥𝐶𝑧𝑧(𝐴𝐵)𝑦))
14 exdistr 1881 . . . 4 (∃𝑧𝑤(𝑥𝐶𝑧 ∧ (𝑧𝐵𝑤𝑤𝐴𝑦)) ↔ ∃𝑧(𝑥𝐶𝑧 ∧ ∃𝑤(𝑧𝐵𝑤𝑤𝐴𝑦)))
1511, 13, 143bitr4i 211 . . 3 (⟨𝑥, 𝑦⟩ ∈ ((𝐴𝐵) ∘ 𝐶) ↔ ∃𝑧𝑤(𝑥𝐶𝑧 ∧ (𝑧𝐵𝑤𝑤𝐴𝑦)))
16 vex 2689 . . . . . . 7 𝑤 ∈ V
1712, 16brco 4710 . . . . . 6 (𝑥(𝐵𝐶)𝑤 ↔ ∃𝑧(𝑥𝐶𝑧𝑧𝐵𝑤))
1817anbi1i 453 . . . . 5 ((𝑥(𝐵𝐶)𝑤𝑤𝐴𝑦) ↔ (∃𝑧(𝑥𝐶𝑧𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦))
1918exbii 1584 . . . 4 (∃𝑤(𝑥(𝐵𝐶)𝑤𝑤𝐴𝑦) ↔ ∃𝑤(∃𝑧(𝑥𝐶𝑧𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦))
2012, 8opelco 4711 . . . 4 (⟨𝑥, 𝑦⟩ ∈ (𝐴 ∘ (𝐵𝐶)) ↔ ∃𝑤(𝑥(𝐵𝐶)𝑤𝑤𝐴𝑦))
21 19.41v 1874 . . . . 5 (∃𝑧((𝑥𝐶𝑧𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦) ↔ (∃𝑧(𝑥𝐶𝑧𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦))
2221exbii 1584 . . . 4 (∃𝑤𝑧((𝑥𝐶𝑧𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦) ↔ ∃𝑤(∃𝑧(𝑥𝐶𝑧𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦))
2319, 20, 223bitr4i 211 . . 3 (⟨𝑥, 𝑦⟩ ∈ (𝐴 ∘ (𝐵𝐶)) ↔ ∃𝑤𝑧((𝑥𝐶𝑧𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦))
246, 15, 233bitr4i 211 . 2 (⟨𝑥, 𝑦⟩ ∈ ((𝐴𝐵) ∘ 𝐶) ↔ ⟨𝑥, 𝑦⟩ ∈ (𝐴 ∘ (𝐵𝐶)))
251, 2, 24eqrelriiv 4633 1 ((𝐴𝐵) ∘ 𝐶) = (𝐴 ∘ (𝐵𝐶))
Colors of variables: wff set class
Syntax hints:  wa 103   = wceq 1331  wex 1468  wcel 1480  cop 3530   class class class wbr 3929  ccom 4543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-br 3930  df-opab 3990  df-xp 4545  df-rel 4546  df-co 4548
This theorem is referenced by:  funcoeqres  5398  fcof1o  5690  tposco  6172  mapen  6740  hashfacen  10579
  Copyright terms: Public domain W3C validator