ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coass GIF version

Theorem coass 5143
Description: Associative law for class composition. Theorem 27 of [Suppes] p. 64. Also Exercise 21 of [Enderton] p. 53. Interestingly, this law holds for any classes whatsoever, not just functions or even relations. (Contributed by NM, 27-Jan-1997.)
Assertion
Ref Expression
coass ((𝐴𝐵) ∘ 𝐶) = (𝐴 ∘ (𝐵𝐶))

Proof of Theorem coass
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relco 5123 . 2 Rel ((𝐴𝐵) ∘ 𝐶)
2 relco 5123 . 2 Rel (𝐴 ∘ (𝐵𝐶))
3 excom 1664 . . . 4 (∃𝑧𝑤(𝑥𝐶𝑧 ∧ (𝑧𝐵𝑤𝑤𝐴𝑦)) ↔ ∃𝑤𝑧(𝑥𝐶𝑧 ∧ (𝑧𝐵𝑤𝑤𝐴𝑦)))
4 anass 401 . . . . 5 (((𝑥𝐶𝑧𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦) ↔ (𝑥𝐶𝑧 ∧ (𝑧𝐵𝑤𝑤𝐴𝑦)))
542exbii 1606 . . . 4 (∃𝑤𝑧((𝑥𝐶𝑧𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦) ↔ ∃𝑤𝑧(𝑥𝐶𝑧 ∧ (𝑧𝐵𝑤𝑤𝐴𝑦)))
63, 5bitr4i 187 . . 3 (∃𝑧𝑤(𝑥𝐶𝑧 ∧ (𝑧𝐵𝑤𝑤𝐴𝑦)) ↔ ∃𝑤𝑧((𝑥𝐶𝑧𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦))
7 vex 2740 . . . . . . 7 𝑧 ∈ V
8 vex 2740 . . . . . . 7 𝑦 ∈ V
97, 8brco 4794 . . . . . 6 (𝑧(𝐴𝐵)𝑦 ↔ ∃𝑤(𝑧𝐵𝑤𝑤𝐴𝑦))
109anbi2i 457 . . . . 5 ((𝑥𝐶𝑧𝑧(𝐴𝐵)𝑦) ↔ (𝑥𝐶𝑧 ∧ ∃𝑤(𝑧𝐵𝑤𝑤𝐴𝑦)))
1110exbii 1605 . . . 4 (∃𝑧(𝑥𝐶𝑧𝑧(𝐴𝐵)𝑦) ↔ ∃𝑧(𝑥𝐶𝑧 ∧ ∃𝑤(𝑧𝐵𝑤𝑤𝐴𝑦)))
12 vex 2740 . . . . 5 𝑥 ∈ V
1312, 8opelco 4795 . . . 4 (⟨𝑥, 𝑦⟩ ∈ ((𝐴𝐵) ∘ 𝐶) ↔ ∃𝑧(𝑥𝐶𝑧𝑧(𝐴𝐵)𝑦))
14 exdistr 1909 . . . 4 (∃𝑧𝑤(𝑥𝐶𝑧 ∧ (𝑧𝐵𝑤𝑤𝐴𝑦)) ↔ ∃𝑧(𝑥𝐶𝑧 ∧ ∃𝑤(𝑧𝐵𝑤𝑤𝐴𝑦)))
1511, 13, 143bitr4i 212 . . 3 (⟨𝑥, 𝑦⟩ ∈ ((𝐴𝐵) ∘ 𝐶) ↔ ∃𝑧𝑤(𝑥𝐶𝑧 ∧ (𝑧𝐵𝑤𝑤𝐴𝑦)))
16 vex 2740 . . . . . . 7 𝑤 ∈ V
1712, 16brco 4794 . . . . . 6 (𝑥(𝐵𝐶)𝑤 ↔ ∃𝑧(𝑥𝐶𝑧𝑧𝐵𝑤))
1817anbi1i 458 . . . . 5 ((𝑥(𝐵𝐶)𝑤𝑤𝐴𝑦) ↔ (∃𝑧(𝑥𝐶𝑧𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦))
1918exbii 1605 . . . 4 (∃𝑤(𝑥(𝐵𝐶)𝑤𝑤𝐴𝑦) ↔ ∃𝑤(∃𝑧(𝑥𝐶𝑧𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦))
2012, 8opelco 4795 . . . 4 (⟨𝑥, 𝑦⟩ ∈ (𝐴 ∘ (𝐵𝐶)) ↔ ∃𝑤(𝑥(𝐵𝐶)𝑤𝑤𝐴𝑦))
21 19.41v 1902 . . . . 5 (∃𝑧((𝑥𝐶𝑧𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦) ↔ (∃𝑧(𝑥𝐶𝑧𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦))
2221exbii 1605 . . . 4 (∃𝑤𝑧((𝑥𝐶𝑧𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦) ↔ ∃𝑤(∃𝑧(𝑥𝐶𝑧𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦))
2319, 20, 223bitr4i 212 . . 3 (⟨𝑥, 𝑦⟩ ∈ (𝐴 ∘ (𝐵𝐶)) ↔ ∃𝑤𝑧((𝑥𝐶𝑧𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦))
246, 15, 233bitr4i 212 . 2 (⟨𝑥, 𝑦⟩ ∈ ((𝐴𝐵) ∘ 𝐶) ↔ ⟨𝑥, 𝑦⟩ ∈ (𝐴 ∘ (𝐵𝐶)))
251, 2, 24eqrelriiv 4717 1 ((𝐴𝐵) ∘ 𝐶) = (𝐴 ∘ (𝐵𝐶))
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1353  wex 1492  wcel 2148  cop 3594   class class class wbr 4000  ccom 4627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2739  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-br 4001  df-opab 4062  df-xp 4629  df-rel 4630  df-co 4632
This theorem is referenced by:  funcoeqres  5488  fcof1o  5784  tposco  6270  mapen  6840  hashfacen  10800
  Copyright terms: Public domain W3C validator