![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fneu | GIF version |
Description: There is exactly one value of a function. (Contributed by NM, 22-Apr-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
Ref | Expression |
---|---|
fneu | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ∃!𝑦 𝐵𝐹𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funmo 5270 | . . . 4 ⊢ (Fun 𝐹 → ∃*𝑦 𝐵𝐹𝑦) | |
2 | 1 | adantr 276 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹) → ∃*𝑦 𝐵𝐹𝑦) |
3 | eldmg 4858 | . . . . . 6 ⊢ (𝐵 ∈ dom 𝐹 → (𝐵 ∈ dom 𝐹 ↔ ∃𝑦 𝐵𝐹𝑦)) | |
4 | 3 | ibi 176 | . . . . 5 ⊢ (𝐵 ∈ dom 𝐹 → ∃𝑦 𝐵𝐹𝑦) |
5 | 4 | adantl 277 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹) → ∃𝑦 𝐵𝐹𝑦) |
6 | exmoeu2 2090 | . . . 4 ⊢ (∃𝑦 𝐵𝐹𝑦 → (∃*𝑦 𝐵𝐹𝑦 ↔ ∃!𝑦 𝐵𝐹𝑦)) | |
7 | 5, 6 | syl 14 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹) → (∃*𝑦 𝐵𝐹𝑦 ↔ ∃!𝑦 𝐵𝐹𝑦)) |
8 | 2, 7 | mpbid 147 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹) → ∃!𝑦 𝐵𝐹𝑦) |
9 | 8 | funfni 5355 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ∃!𝑦 𝐵𝐹𝑦) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∃wex 1503 ∃!weu 2042 ∃*wmo 2043 ∈ wcel 2164 class class class wbr 4030 dom cdm 4660 Fun wfun 5249 Fn wfn 5250 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-br 4031 df-opab 4092 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-fun 5257 df-fn 5258 |
This theorem is referenced by: fneu2 5360 fnbrfvb 5598 mapsn 6746 |
Copyright terms: Public domain | W3C validator |