![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fneu | GIF version |
Description: There is exactly one value of a function. (Contributed by NM, 22-Apr-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
Ref | Expression |
---|---|
fneu | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ∃!𝑦 𝐵𝐹𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funmo 5045 | . . . 4 ⊢ (Fun 𝐹 → ∃*𝑦 𝐵𝐹𝑦) | |
2 | 1 | adantr 271 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹) → ∃*𝑦 𝐵𝐹𝑦) |
3 | eldmg 4646 | . . . . . 6 ⊢ (𝐵 ∈ dom 𝐹 → (𝐵 ∈ dom 𝐹 ↔ ∃𝑦 𝐵𝐹𝑦)) | |
4 | 3 | ibi 175 | . . . . 5 ⊢ (𝐵 ∈ dom 𝐹 → ∃𝑦 𝐵𝐹𝑦) |
5 | 4 | adantl 272 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹) → ∃𝑦 𝐵𝐹𝑦) |
6 | exmoeu2 1997 | . . . 4 ⊢ (∃𝑦 𝐵𝐹𝑦 → (∃*𝑦 𝐵𝐹𝑦 ↔ ∃!𝑦 𝐵𝐹𝑦)) | |
7 | 5, 6 | syl 14 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹) → (∃*𝑦 𝐵𝐹𝑦 ↔ ∃!𝑦 𝐵𝐹𝑦)) |
8 | 2, 7 | mpbid 146 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹) → ∃!𝑦 𝐵𝐹𝑦) |
9 | 8 | funfni 5129 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ∃!𝑦 𝐵𝐹𝑦) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∃wex 1427 ∈ wcel 1439 ∃!weu 1949 ∃*wmo 1950 class class class wbr 3853 dom cdm 4454 Fun wfun 5024 Fn wfn 5025 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-14 1451 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-sep 3965 ax-pow 4017 ax-pr 4047 |
This theorem depends on definitions: df-bi 116 df-3an 927 df-tru 1293 df-nf 1396 df-sb 1694 df-eu 1952 df-mo 1953 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ral 2365 df-rex 2366 df-v 2624 df-un 3006 df-in 3008 df-ss 3015 df-pw 3437 df-sn 3458 df-pr 3459 df-op 3461 df-br 3854 df-opab 3908 df-id 4131 df-xp 4460 df-rel 4461 df-cnv 4462 df-co 4463 df-dm 4464 df-fun 5032 df-fn 5033 |
This theorem is referenced by: fneu2 5134 fnbrfvb 5360 mapsn 6463 |
Copyright terms: Public domain | W3C validator |