ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fneu GIF version

Theorem fneu 5388
Description: There is exactly one value of a function. (Contributed by NM, 22-Apr-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
fneu ((𝐹 Fn 𝐴𝐵𝐴) → ∃!𝑦 𝐵𝐹𝑦)
Distinct variable groups:   𝑦,𝐹   𝑦,𝐵
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem fneu
StepHypRef Expression
1 funmo 5294 . . . 4 (Fun 𝐹 → ∃*𝑦 𝐵𝐹𝑦)
21adantr 276 . . 3 ((Fun 𝐹𝐵 ∈ dom 𝐹) → ∃*𝑦 𝐵𝐹𝑦)
3 eldmg 4881 . . . . . 6 (𝐵 ∈ dom 𝐹 → (𝐵 ∈ dom 𝐹 ↔ ∃𝑦 𝐵𝐹𝑦))
43ibi 176 . . . . 5 (𝐵 ∈ dom 𝐹 → ∃𝑦 𝐵𝐹𝑦)
54adantl 277 . . . 4 ((Fun 𝐹𝐵 ∈ dom 𝐹) → ∃𝑦 𝐵𝐹𝑦)
6 exmoeu2 2103 . . . 4 (∃𝑦 𝐵𝐹𝑦 → (∃*𝑦 𝐵𝐹𝑦 ↔ ∃!𝑦 𝐵𝐹𝑦))
75, 6syl 14 . . 3 ((Fun 𝐹𝐵 ∈ dom 𝐹) → (∃*𝑦 𝐵𝐹𝑦 ↔ ∃!𝑦 𝐵𝐹𝑦))
82, 7mpbid 147 . 2 ((Fun 𝐹𝐵 ∈ dom 𝐹) → ∃!𝑦 𝐵𝐹𝑦)
98funfni 5384 1 ((𝐹 Fn 𝐴𝐵𝐴) → ∃!𝑦 𝐵𝐹𝑦)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wex 1516  ∃!weu 2055  ∃*wmo 2056  wcel 2177   class class class wbr 4050  dom cdm 4682  Fun wfun 5273   Fn wfn 5274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4169  ax-pow 4225  ax-pr 4260
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-br 4051  df-opab 4113  df-id 4347  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-fun 5281  df-fn 5282
This theorem is referenced by:  fneu2  5389  fnbrfvb  5631  mapsn  6789
  Copyright terms: Public domain W3C validator