ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  omiunct GIF version

Theorem omiunct 12661
Description: The union of a countably infinite collection of countable sets is countable. Theorem 8.1.28 of [AczelRathjen], p. 78. Compare with ctiunct 12657 which has a stronger hypothesis but does not require countable choice. (Contributed by Jim Kingdon, 5-May-2024.)
Hypotheses
Ref Expression
omiunct.cc (𝜑CCHOICE)
omiunct.g ((𝜑𝑥 ∈ ω) → ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o))
Assertion
Ref Expression
omiunct (𝜑 → ∃ :ω–onto→( 𝑥 ∈ ω 𝐵 ⊔ 1o))
Distinct variable groups:   𝐵,𝑔   𝐵,   𝜑,𝑔,𝑥   𝑥,
Allowed substitution hints:   𝜑()   𝐵(𝑥)

Proof of Theorem omiunct
Dummy variables 𝑓 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omiunct.cc . . . 4 (𝜑CCHOICE)
2 omiunct.g . . . 4 ((𝜑𝑥 ∈ ω) → ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o))
31, 2omctfn 12660 . . 3 (𝜑 → ∃𝑓(𝑓 Fn ω ∧ ∀𝑥 ∈ ω (𝑓𝑥):ω–onto→(𝐵 ⊔ 1o)))
4 exsimpr 1632 . . 3 (∃𝑓(𝑓 Fn ω ∧ ∀𝑥 ∈ ω (𝑓𝑥):ω–onto→(𝐵 ⊔ 1o)) → ∃𝑓𝑥 ∈ ω (𝑓𝑥):ω–onto→(𝐵 ⊔ 1o))
53, 4syl 14 . 2 (𝜑 → ∃𝑓𝑥 ∈ ω (𝑓𝑥):ω–onto→(𝐵 ⊔ 1o))
6 omct 7183 . . 3 𝑘 𝑘:ω–onto→(ω ⊔ 1o)
7 simpr 110 . . . . . 6 (((𝜑 ∧ ∀𝑥 ∈ ω (𝑓𝑥):ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑘:ω–onto→(ω ⊔ 1o)) → 𝑘:ω–onto→(ω ⊔ 1o))
8 simplr 528 . . . . . 6 (((𝜑 ∧ ∀𝑥 ∈ ω (𝑓𝑥):ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑘:ω–onto→(ω ⊔ 1o)) → ∀𝑥 ∈ ω (𝑓𝑥):ω–onto→(𝐵 ⊔ 1o))
97, 8ctiunctal 12658 . . . . 5 (((𝜑 ∧ ∀𝑥 ∈ ω (𝑓𝑥):ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑘:ω–onto→(ω ⊔ 1o)) → ∃ :ω–onto→( 𝑥 ∈ ω 𝐵 ⊔ 1o))
109expcom 116 . . . 4 (𝑘:ω–onto→(ω ⊔ 1o) → ((𝜑 ∧ ∀𝑥 ∈ ω (𝑓𝑥):ω–onto→(𝐵 ⊔ 1o)) → ∃ :ω–onto→( 𝑥 ∈ ω 𝐵 ⊔ 1o)))
1110exlimiv 1612 . . 3 (∃𝑘 𝑘:ω–onto→(ω ⊔ 1o) → ((𝜑 ∧ ∀𝑥 ∈ ω (𝑓𝑥):ω–onto→(𝐵 ⊔ 1o)) → ∃ :ω–onto→( 𝑥 ∈ ω 𝐵 ⊔ 1o)))
126, 11ax-mp 5 . 2 ((𝜑 ∧ ∀𝑥 ∈ ω (𝑓𝑥):ω–onto→(𝐵 ⊔ 1o)) → ∃ :ω–onto→( 𝑥 ∈ ω 𝐵 ⊔ 1o))
135, 12exlimddv 1913 1 (𝜑 → ∃ :ω–onto→( 𝑥 ∈ ω 𝐵 ⊔ 1o))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wex 1506  wcel 2167  wral 2475   ciun 3916  ωcom 4626   Fn wfn 5253  ontowfo 5256  cfv 5258  1oc1o 6467  cdju 7103  CCHOICEwacc 7329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-1o 6474  df-er 6592  df-map 6709  df-en 6800  df-dju 7104  df-inl 7113  df-inr 7114  df-case 7150  df-cc 7330  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fz 10084  df-fl 10360  df-mod 10415  df-seqfrec 10540  df-exp 10631  df-dvds 11953
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator