![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > omiunct | GIF version |
Description: The union of a countably infinite collection of countable sets is countable. Theorem 8.1.28 of [AczelRathjen], p. 78. Compare with ctiunct 12597 which has a stronger hypothesis but does not require countable choice. (Contributed by Jim Kingdon, 5-May-2024.) |
Ref | Expression |
---|---|
omiunct.cc | ⊢ (𝜑 → CCHOICE) |
omiunct.g | ⊢ ((𝜑 ∧ 𝑥 ∈ ω) → ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o)) |
Ref | Expression |
---|---|
omiunct | ⊢ (𝜑 → ∃ℎ ℎ:ω–onto→(∪ 𝑥 ∈ ω 𝐵 ⊔ 1o)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omiunct.cc | . . . 4 ⊢ (𝜑 → CCHOICE) | |
2 | omiunct.g | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ω) → ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o)) | |
3 | 1, 2 | omctfn 12600 | . . 3 ⊢ (𝜑 → ∃𝑓(𝑓 Fn ω ∧ ∀𝑥 ∈ ω (𝑓‘𝑥):ω–onto→(𝐵 ⊔ 1o))) |
4 | exsimpr 1629 | . . 3 ⊢ (∃𝑓(𝑓 Fn ω ∧ ∀𝑥 ∈ ω (𝑓‘𝑥):ω–onto→(𝐵 ⊔ 1o)) → ∃𝑓∀𝑥 ∈ ω (𝑓‘𝑥):ω–onto→(𝐵 ⊔ 1o)) | |
5 | 3, 4 | syl 14 | . 2 ⊢ (𝜑 → ∃𝑓∀𝑥 ∈ ω (𝑓‘𝑥):ω–onto→(𝐵 ⊔ 1o)) |
6 | omct 7176 | . . 3 ⊢ ∃𝑘 𝑘:ω–onto→(ω ⊔ 1o) | |
7 | simpr 110 | . . . . . 6 ⊢ (((𝜑 ∧ ∀𝑥 ∈ ω (𝑓‘𝑥):ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑘:ω–onto→(ω ⊔ 1o)) → 𝑘:ω–onto→(ω ⊔ 1o)) | |
8 | simplr 528 | . . . . . 6 ⊢ (((𝜑 ∧ ∀𝑥 ∈ ω (𝑓‘𝑥):ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑘:ω–onto→(ω ⊔ 1o)) → ∀𝑥 ∈ ω (𝑓‘𝑥):ω–onto→(𝐵 ⊔ 1o)) | |
9 | 7, 8 | ctiunctal 12598 | . . . . 5 ⊢ (((𝜑 ∧ ∀𝑥 ∈ ω (𝑓‘𝑥):ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑘:ω–onto→(ω ⊔ 1o)) → ∃ℎ ℎ:ω–onto→(∪ 𝑥 ∈ ω 𝐵 ⊔ 1o)) |
10 | 9 | expcom 116 | . . . 4 ⊢ (𝑘:ω–onto→(ω ⊔ 1o) → ((𝜑 ∧ ∀𝑥 ∈ ω (𝑓‘𝑥):ω–onto→(𝐵 ⊔ 1o)) → ∃ℎ ℎ:ω–onto→(∪ 𝑥 ∈ ω 𝐵 ⊔ 1o))) |
11 | 10 | exlimiv 1609 | . . 3 ⊢ (∃𝑘 𝑘:ω–onto→(ω ⊔ 1o) → ((𝜑 ∧ ∀𝑥 ∈ ω (𝑓‘𝑥):ω–onto→(𝐵 ⊔ 1o)) → ∃ℎ ℎ:ω–onto→(∪ 𝑥 ∈ ω 𝐵 ⊔ 1o))) |
12 | 6, 11 | ax-mp 5 | . 2 ⊢ ((𝜑 ∧ ∀𝑥 ∈ ω (𝑓‘𝑥):ω–onto→(𝐵 ⊔ 1o)) → ∃ℎ ℎ:ω–onto→(∪ 𝑥 ∈ ω 𝐵 ⊔ 1o)) |
13 | 5, 12 | exlimddv 1910 | 1 ⊢ (𝜑 → ∃ℎ ℎ:ω–onto→(∪ 𝑥 ∈ ω 𝐵 ⊔ 1o)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∃wex 1503 ∈ wcel 2164 ∀wral 2472 ∪ ciun 3912 ωcom 4622 Fn wfn 5249 –onto→wfo 5252 ‘cfv 5254 1oc1o 6462 ⊔ cdju 7096 CCHOICEwacc 7322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulrcl 7971 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-precex 7982 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 ax-pre-mulgt0 7989 ax-pre-mulext 7990 ax-arch 7991 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-xor 1387 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-if 3558 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-po 4327 df-iso 4328 df-iord 4397 df-on 4399 df-ilim 4400 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-recs 6358 df-frec 6444 df-1o 6469 df-er 6587 df-map 6704 df-en 6795 df-dju 7097 df-inl 7106 df-inr 7107 df-case 7143 df-cc 7323 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-reap 8594 df-ap 8601 df-div 8692 df-inn 8983 df-2 9041 df-n0 9241 df-z 9318 df-uz 9593 df-q 9685 df-rp 9720 df-fz 10075 df-fl 10339 df-mod 10394 df-seqfrec 10519 df-exp 10610 df-dvds 11931 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |