ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  omiunct GIF version

Theorem omiunct 12399
Description: The union of a countably infinite collection of countable sets is countable. Theorem 8.1.28 of [AczelRathjen], p. 78. Compare with ctiunct 12395 which has a stronger hypothesis but does not require countable choice. (Contributed by Jim Kingdon, 5-May-2024.)
Hypotheses
Ref Expression
omiunct.cc (𝜑CCHOICE)
omiunct.g ((𝜑𝑥 ∈ ω) → ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o))
Assertion
Ref Expression
omiunct (𝜑 → ∃ :ω–onto→( 𝑥 ∈ ω 𝐵 ⊔ 1o))
Distinct variable groups:   𝐵,𝑔   𝐵,   𝜑,𝑔,𝑥   𝑥,
Allowed substitution hints:   𝜑()   𝐵(𝑥)

Proof of Theorem omiunct
Dummy variables 𝑓 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omiunct.cc . . . 4 (𝜑CCHOICE)
2 omiunct.g . . . 4 ((𝜑𝑥 ∈ ω) → ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o))
31, 2omctfn 12398 . . 3 (𝜑 → ∃𝑓(𝑓 Fn ω ∧ ∀𝑥 ∈ ω (𝑓𝑥):ω–onto→(𝐵 ⊔ 1o)))
4 exsimpr 1611 . . 3 (∃𝑓(𝑓 Fn ω ∧ ∀𝑥 ∈ ω (𝑓𝑥):ω–onto→(𝐵 ⊔ 1o)) → ∃𝑓𝑥 ∈ ω (𝑓𝑥):ω–onto→(𝐵 ⊔ 1o))
53, 4syl 14 . 2 (𝜑 → ∃𝑓𝑥 ∈ ω (𝑓𝑥):ω–onto→(𝐵 ⊔ 1o))
6 omct 7094 . . 3 𝑘 𝑘:ω–onto→(ω ⊔ 1o)
7 simpr 109 . . . . . 6 (((𝜑 ∧ ∀𝑥 ∈ ω (𝑓𝑥):ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑘:ω–onto→(ω ⊔ 1o)) → 𝑘:ω–onto→(ω ⊔ 1o))
8 simplr 525 . . . . . 6 (((𝜑 ∧ ∀𝑥 ∈ ω (𝑓𝑥):ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑘:ω–onto→(ω ⊔ 1o)) → ∀𝑥 ∈ ω (𝑓𝑥):ω–onto→(𝐵 ⊔ 1o))
97, 8ctiunctal 12396 . . . . 5 (((𝜑 ∧ ∀𝑥 ∈ ω (𝑓𝑥):ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑘:ω–onto→(ω ⊔ 1o)) → ∃ :ω–onto→( 𝑥 ∈ ω 𝐵 ⊔ 1o))
109expcom 115 . . . 4 (𝑘:ω–onto→(ω ⊔ 1o) → ((𝜑 ∧ ∀𝑥 ∈ ω (𝑓𝑥):ω–onto→(𝐵 ⊔ 1o)) → ∃ :ω–onto→( 𝑥 ∈ ω 𝐵 ⊔ 1o)))
1110exlimiv 1591 . . 3 (∃𝑘 𝑘:ω–onto→(ω ⊔ 1o) → ((𝜑 ∧ ∀𝑥 ∈ ω (𝑓𝑥):ω–onto→(𝐵 ⊔ 1o)) → ∃ :ω–onto→( 𝑥 ∈ ω 𝐵 ⊔ 1o)))
126, 11ax-mp 5 . 2 ((𝜑 ∧ ∀𝑥 ∈ ω (𝑓𝑥):ω–onto→(𝐵 ⊔ 1o)) → ∃ :ω–onto→( 𝑥 ∈ ω 𝐵 ⊔ 1o))
135, 12exlimddv 1891 1 (𝜑 → ∃ :ω–onto→( 𝑥 ∈ ω 𝐵 ⊔ 1o))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wex 1485  wcel 2141  wral 2448   ciun 3873  ωcom 4574   Fn wfn 5193  ontowfo 5196  cfv 5198  1oc1o 6388  cdju 7014  CCHOICEwacc 7224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-xor 1371  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-1o 6395  df-er 6513  df-map 6628  df-en 6719  df-dju 7015  df-inl 7024  df-inr 7025  df-case 7061  df-cc 7225  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-fz 9966  df-fl 10226  df-mod 10279  df-seqfrec 10402  df-exp 10476  df-dvds 11750
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator