Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > omiunct | GIF version |
Description: The union of a countably infinite collection of countable sets is countable. Theorem 8.1.28 of [AczelRathjen], p. 78. Compare with ctiunct 12395 which has a stronger hypothesis but does not require countable choice. (Contributed by Jim Kingdon, 5-May-2024.) |
Ref | Expression |
---|---|
omiunct.cc | ⊢ (𝜑 → CCHOICE) |
omiunct.g | ⊢ ((𝜑 ∧ 𝑥 ∈ ω) → ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o)) |
Ref | Expression |
---|---|
omiunct | ⊢ (𝜑 → ∃ℎ ℎ:ω–onto→(∪ 𝑥 ∈ ω 𝐵 ⊔ 1o)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omiunct.cc | . . . 4 ⊢ (𝜑 → CCHOICE) | |
2 | omiunct.g | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ω) → ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o)) | |
3 | 1, 2 | omctfn 12398 | . . 3 ⊢ (𝜑 → ∃𝑓(𝑓 Fn ω ∧ ∀𝑥 ∈ ω (𝑓‘𝑥):ω–onto→(𝐵 ⊔ 1o))) |
4 | exsimpr 1611 | . . 3 ⊢ (∃𝑓(𝑓 Fn ω ∧ ∀𝑥 ∈ ω (𝑓‘𝑥):ω–onto→(𝐵 ⊔ 1o)) → ∃𝑓∀𝑥 ∈ ω (𝑓‘𝑥):ω–onto→(𝐵 ⊔ 1o)) | |
5 | 3, 4 | syl 14 | . 2 ⊢ (𝜑 → ∃𝑓∀𝑥 ∈ ω (𝑓‘𝑥):ω–onto→(𝐵 ⊔ 1o)) |
6 | omct 7094 | . . 3 ⊢ ∃𝑘 𝑘:ω–onto→(ω ⊔ 1o) | |
7 | simpr 109 | . . . . . 6 ⊢ (((𝜑 ∧ ∀𝑥 ∈ ω (𝑓‘𝑥):ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑘:ω–onto→(ω ⊔ 1o)) → 𝑘:ω–onto→(ω ⊔ 1o)) | |
8 | simplr 525 | . . . . . 6 ⊢ (((𝜑 ∧ ∀𝑥 ∈ ω (𝑓‘𝑥):ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑘:ω–onto→(ω ⊔ 1o)) → ∀𝑥 ∈ ω (𝑓‘𝑥):ω–onto→(𝐵 ⊔ 1o)) | |
9 | 7, 8 | ctiunctal 12396 | . . . . 5 ⊢ (((𝜑 ∧ ∀𝑥 ∈ ω (𝑓‘𝑥):ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑘:ω–onto→(ω ⊔ 1o)) → ∃ℎ ℎ:ω–onto→(∪ 𝑥 ∈ ω 𝐵 ⊔ 1o)) |
10 | 9 | expcom 115 | . . . 4 ⊢ (𝑘:ω–onto→(ω ⊔ 1o) → ((𝜑 ∧ ∀𝑥 ∈ ω (𝑓‘𝑥):ω–onto→(𝐵 ⊔ 1o)) → ∃ℎ ℎ:ω–onto→(∪ 𝑥 ∈ ω 𝐵 ⊔ 1o))) |
11 | 10 | exlimiv 1591 | . . 3 ⊢ (∃𝑘 𝑘:ω–onto→(ω ⊔ 1o) → ((𝜑 ∧ ∀𝑥 ∈ ω (𝑓‘𝑥):ω–onto→(𝐵 ⊔ 1o)) → ∃ℎ ℎ:ω–onto→(∪ 𝑥 ∈ ω 𝐵 ⊔ 1o))) |
12 | 6, 11 | ax-mp 5 | . 2 ⊢ ((𝜑 ∧ ∀𝑥 ∈ ω (𝑓‘𝑥):ω–onto→(𝐵 ⊔ 1o)) → ∃ℎ ℎ:ω–onto→(∪ 𝑥 ∈ ω 𝐵 ⊔ 1o)) |
13 | 5, 12 | exlimddv 1891 | 1 ⊢ (𝜑 → ∃ℎ ℎ:ω–onto→(∪ 𝑥 ∈ ω 𝐵 ⊔ 1o)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∃wex 1485 ∈ wcel 2141 ∀wral 2448 ∪ ciun 3873 ωcom 4574 Fn wfn 5193 –onto→wfo 5196 ‘cfv 5198 1oc1o 6388 ⊔ cdju 7014 CCHOICEwacc 7224 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 ax-arch 7893 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-xor 1371 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-frec 6370 df-1o 6395 df-er 6513 df-map 6628 df-en 6719 df-dju 7015 df-inl 7024 df-inr 7025 df-case 7061 df-cc 7225 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-2 8937 df-n0 9136 df-z 9213 df-uz 9488 df-q 9579 df-rp 9611 df-fz 9966 df-fl 10226 df-mod 10279 df-seqfrec 10402 df-exp 10476 df-dvds 11750 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |