Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > omiunct | GIF version |
Description: The union of a countably infinite collection of countable sets is countable. Theorem 8.1.28 of [AczelRathjen], p. 78. Compare with ctiunct 12406 which has a stronger hypothesis but does not require countable choice. (Contributed by Jim Kingdon, 5-May-2024.) |
Ref | Expression |
---|---|
omiunct.cc | ⊢ (𝜑 → CCHOICE) |
omiunct.g | ⊢ ((𝜑 ∧ 𝑥 ∈ ω) → ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o)) |
Ref | Expression |
---|---|
omiunct | ⊢ (𝜑 → ∃ℎ ℎ:ω–onto→(∪ 𝑥 ∈ ω 𝐵 ⊔ 1o)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omiunct.cc | . . . 4 ⊢ (𝜑 → CCHOICE) | |
2 | omiunct.g | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ω) → ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o)) | |
3 | 1, 2 | omctfn 12409 | . . 3 ⊢ (𝜑 → ∃𝑓(𝑓 Fn ω ∧ ∀𝑥 ∈ ω (𝑓‘𝑥):ω–onto→(𝐵 ⊔ 1o))) |
4 | exsimpr 1616 | . . 3 ⊢ (∃𝑓(𝑓 Fn ω ∧ ∀𝑥 ∈ ω (𝑓‘𝑥):ω–onto→(𝐵 ⊔ 1o)) → ∃𝑓∀𝑥 ∈ ω (𝑓‘𝑥):ω–onto→(𝐵 ⊔ 1o)) | |
5 | 3, 4 | syl 14 | . 2 ⊢ (𝜑 → ∃𝑓∀𝑥 ∈ ω (𝑓‘𝑥):ω–onto→(𝐵 ⊔ 1o)) |
6 | omct 7106 | . . 3 ⊢ ∃𝑘 𝑘:ω–onto→(ω ⊔ 1o) | |
7 | simpr 110 | . . . . . 6 ⊢ (((𝜑 ∧ ∀𝑥 ∈ ω (𝑓‘𝑥):ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑘:ω–onto→(ω ⊔ 1o)) → 𝑘:ω–onto→(ω ⊔ 1o)) | |
8 | simplr 528 | . . . . . 6 ⊢ (((𝜑 ∧ ∀𝑥 ∈ ω (𝑓‘𝑥):ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑘:ω–onto→(ω ⊔ 1o)) → ∀𝑥 ∈ ω (𝑓‘𝑥):ω–onto→(𝐵 ⊔ 1o)) | |
9 | 7, 8 | ctiunctal 12407 | . . . . 5 ⊢ (((𝜑 ∧ ∀𝑥 ∈ ω (𝑓‘𝑥):ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑘:ω–onto→(ω ⊔ 1o)) → ∃ℎ ℎ:ω–onto→(∪ 𝑥 ∈ ω 𝐵 ⊔ 1o)) |
10 | 9 | expcom 116 | . . . 4 ⊢ (𝑘:ω–onto→(ω ⊔ 1o) → ((𝜑 ∧ ∀𝑥 ∈ ω (𝑓‘𝑥):ω–onto→(𝐵 ⊔ 1o)) → ∃ℎ ℎ:ω–onto→(∪ 𝑥 ∈ ω 𝐵 ⊔ 1o))) |
11 | 10 | exlimiv 1596 | . . 3 ⊢ (∃𝑘 𝑘:ω–onto→(ω ⊔ 1o) → ((𝜑 ∧ ∀𝑥 ∈ ω (𝑓‘𝑥):ω–onto→(𝐵 ⊔ 1o)) → ∃ℎ ℎ:ω–onto→(∪ 𝑥 ∈ ω 𝐵 ⊔ 1o))) |
12 | 6, 11 | ax-mp 5 | . 2 ⊢ ((𝜑 ∧ ∀𝑥 ∈ ω (𝑓‘𝑥):ω–onto→(𝐵 ⊔ 1o)) → ∃ℎ ℎ:ω–onto→(∪ 𝑥 ∈ ω 𝐵 ⊔ 1o)) |
13 | 5, 12 | exlimddv 1896 | 1 ⊢ (𝜑 → ∃ℎ ℎ:ω–onto→(∪ 𝑥 ∈ ω 𝐵 ⊔ 1o)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∃wex 1490 ∈ wcel 2146 ∀wral 2453 ∪ ciun 3882 ωcom 4583 Fn wfn 5203 –onto→wfo 5206 ‘cfv 5208 1oc1o 6400 ⊔ cdju 7026 CCHOICEwacc 7236 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-coll 4113 ax-sep 4116 ax-nul 4124 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-iinf 4581 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-mulrcl 7885 ax-addcom 7886 ax-mulcom 7887 ax-addass 7888 ax-mulass 7889 ax-distr 7890 ax-i2m1 7891 ax-0lt1 7892 ax-1rid 7893 ax-0id 7894 ax-rnegex 7895 ax-precex 7896 ax-cnre 7897 ax-pre-ltirr 7898 ax-pre-ltwlin 7899 ax-pre-lttrn 7900 ax-pre-apti 7901 ax-pre-ltadd 7902 ax-pre-mulgt0 7903 ax-pre-mulext 7904 ax-arch 7905 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-xor 1376 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-reu 2460 df-rmo 2461 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-if 3533 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-tr 4097 df-id 4287 df-po 4290 df-iso 4291 df-iord 4360 df-on 4362 df-ilim 4363 df-suc 4365 df-iom 4584 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-1st 6131 df-2nd 6132 df-recs 6296 df-frec 6382 df-1o 6407 df-er 6525 df-map 6640 df-en 6731 df-dju 7027 df-inl 7036 df-inr 7037 df-case 7073 df-cc 7237 df-pnf 7968 df-mnf 7969 df-xr 7970 df-ltxr 7971 df-le 7972 df-sub 8104 df-neg 8105 df-reap 8506 df-ap 8513 df-div 8602 df-inn 8891 df-2 8949 df-n0 9148 df-z 9225 df-uz 9500 df-q 9591 df-rp 9623 df-fz 9978 df-fl 10238 df-mod 10291 df-seqfrec 10414 df-exp 10488 df-dvds 11761 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |