| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imassrn | GIF version | ||
| Description: The image of a class is a subset of its range. Theorem 3.16(xi) of [Monk1] p. 39. (Contributed by NM, 31-Mar-1995.) |
| Ref | Expression |
|---|---|
| imassrn | ⊢ (𝐴 “ 𝐵) ⊆ ran 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exsimpr 1642 | . . 3 ⊢ (∃𝑥(𝑥 ∈ 𝐵 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴) → ∃𝑥〈𝑥, 𝑦〉 ∈ 𝐴) | |
| 2 | 1 | ss2abi 3267 | . 2 ⊢ {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐵 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴)} ⊆ {𝑦 ∣ ∃𝑥〈𝑥, 𝑦〉 ∈ 𝐴} |
| 3 | dfima3 5031 | . 2 ⊢ (𝐴 “ 𝐵) = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐵 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴)} | |
| 4 | dfrn3 4872 | . 2 ⊢ ran 𝐴 = {𝑦 ∣ ∃𝑥〈𝑥, 𝑦〉 ∈ 𝐴} | |
| 5 | 2, 3, 4 | 3sstr4i 3236 | 1 ⊢ (𝐴 “ 𝐵) ⊆ ran 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ∃wex 1516 ∈ wcel 2177 {cab 2192 ⊆ wss 3168 〈cop 3638 ran crn 4681 “ cima 4683 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-br 4049 df-opab 4111 df-xp 4686 df-cnv 4688 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 |
| This theorem is referenced by: imaexg 5042 0ima 5048 cnvimass 5051 fimacnv 5719 f1opw2 6162 smores2 6390 ecss 6673 f1imaen2g 6895 fopwdom 6945 ssenen 6960 phplem4dom 6971 isinfinf 7006 fiintim 7040 sbthlem2 7072 sbthlemi3 7073 sbthlemi5 7075 sbthlemi6 7076 ctssdccl 7225 ctinf 12851 ssnnctlemct 12867 mhmima 13373 cnptoprest2 14762 hmeontr 14835 hmeores 14837 tgqioo 15077 domomsubct 16053 |
| Copyright terms: Public domain | W3C validator |