| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imassrn | GIF version | ||
| Description: The image of a class is a subset of its range. Theorem 3.16(xi) of [Monk1] p. 39. (Contributed by NM, 31-Mar-1995.) |
| Ref | Expression |
|---|---|
| imassrn | ⊢ (𝐴 “ 𝐵) ⊆ ran 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exsimpr 1664 | . . 3 ⊢ (∃𝑥(𝑥 ∈ 𝐵 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴) → ∃𝑥〈𝑥, 𝑦〉 ∈ 𝐴) | |
| 2 | 1 | ss2abi 3296 | . 2 ⊢ {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐵 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴)} ⊆ {𝑦 ∣ ∃𝑥〈𝑥, 𝑦〉 ∈ 𝐴} |
| 3 | dfima3 5067 | . 2 ⊢ (𝐴 “ 𝐵) = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐵 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴)} | |
| 4 | dfrn3 4908 | . 2 ⊢ ran 𝐴 = {𝑦 ∣ ∃𝑥〈𝑥, 𝑦〉 ∈ 𝐴} | |
| 5 | 2, 3, 4 | 3sstr4i 3265 | 1 ⊢ (𝐴 “ 𝐵) ⊆ ran 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ∃wex 1538 ∈ wcel 2200 {cab 2215 ⊆ wss 3197 〈cop 3669 ran crn 4717 “ cima 4719 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-xp 4722 df-cnv 4724 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 |
| This theorem is referenced by: imaexg 5078 0ima 5084 cnvimass 5087 fimacnv 5757 f1opw2 6202 smores2 6430 ecss 6713 f1imaen2g 6935 fopwdom 6985 ssenen 7000 phplem4dom 7011 isinfinf 7047 fiintim 7081 sbthlem2 7113 sbthlemi3 7114 sbthlemi5 7116 sbthlemi6 7117 ctssdccl 7266 ctinf 12987 ssnnctlemct 13003 mhmima 13510 cnptoprest2 14899 hmeontr 14972 hmeores 14974 tgqioo 15214 domomsubct 16298 |
| Copyright terms: Public domain | W3C validator |