Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > imassrn | GIF version |
Description: The image of a class is a subset of its range. Theorem 3.16(xi) of [Monk1] p. 39. (Contributed by NM, 31-Mar-1995.) |
Ref | Expression |
---|---|
imassrn | ⊢ (𝐴 “ 𝐵) ⊆ ran 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exsimpr 1606 | . . 3 ⊢ (∃𝑥(𝑥 ∈ 𝐵 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴) → ∃𝑥〈𝑥, 𝑦〉 ∈ 𝐴) | |
2 | 1 | ss2abi 3214 | . 2 ⊢ {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐵 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴)} ⊆ {𝑦 ∣ ∃𝑥〈𝑥, 𝑦〉 ∈ 𝐴} |
3 | dfima3 4949 | . 2 ⊢ (𝐴 “ 𝐵) = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐵 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴)} | |
4 | dfrn3 4793 | . 2 ⊢ ran 𝐴 = {𝑦 ∣ ∃𝑥〈𝑥, 𝑦〉 ∈ 𝐴} | |
5 | 2, 3, 4 | 3sstr4i 3183 | 1 ⊢ (𝐴 “ 𝐵) ⊆ ran 𝐴 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ∃wex 1480 ∈ wcel 2136 {cab 2151 ⊆ wss 3116 〈cop 3579 ran crn 4605 “ cima 4607 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-xp 4610 df-cnv 4612 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 |
This theorem is referenced by: imaexg 4958 0ima 4964 cnvimass 4967 fimacnv 5614 f1opw2 6044 smores2 6262 ecss 6542 f1imaen2g 6759 fopwdom 6802 ssenen 6817 phplem4dom 6828 isinfinf 6863 fiintim 6894 sbthlem2 6923 sbthlemi3 6924 sbthlemi5 6926 sbthlemi6 6927 ctssdccl 7076 ctinf 12363 ssnnctlemct 12379 cnptoprest2 12890 hmeontr 12963 hmeores 12965 tgqioo 13197 |
Copyright terms: Public domain | W3C validator |