ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imassrn GIF version

Theorem imassrn 4980
Description: The image of a class is a subset of its range. Theorem 3.16(xi) of [Monk1] p. 39. (Contributed by NM, 31-Mar-1995.)
Assertion
Ref Expression
imassrn (𝐴𝐵) ⊆ ran 𝐴

Proof of Theorem imassrn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 exsimpr 1618 . . 3 (∃𝑥(𝑥𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴) → ∃𝑥𝑥, 𝑦⟩ ∈ 𝐴)
21ss2abi 3227 . 2 {𝑦 ∣ ∃𝑥(𝑥𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴)} ⊆ {𝑦 ∣ ∃𝑥𝑥, 𝑦⟩ ∈ 𝐴}
3 dfima3 4972 . 2 (𝐴𝐵) = {𝑦 ∣ ∃𝑥(𝑥𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴)}
4 dfrn3 4815 . 2 ran 𝐴 = {𝑦 ∣ ∃𝑥𝑥, 𝑦⟩ ∈ 𝐴}
52, 3, 43sstr4i 3196 1 (𝐴𝐵) ⊆ ran 𝐴
Colors of variables: wff set class
Syntax hints:  wa 104  wex 1492  wcel 2148  {cab 2163  wss 3129  cop 3595  ran crn 4626  cima 4628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4120  ax-pow 4173  ax-pr 4208
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2739  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-br 4003  df-opab 4064  df-xp 4631  df-cnv 4633  df-dm 4635  df-rn 4636  df-res 4637  df-ima 4638
This theorem is referenced by:  imaexg  4981  0ima  4987  cnvimass  4990  fimacnv  5644  f1opw2  6074  smores2  6292  ecss  6573  f1imaen2g  6790  fopwdom  6833  ssenen  6848  phplem4dom  6859  isinfinf  6894  fiintim  6925  sbthlem2  6954  sbthlemi3  6955  sbthlemi5  6957  sbthlemi6  6958  ctssdccl  7107  ctinf  12423  ssnnctlemct  12439  mhmima  12807  cnptoprest2  13611  hmeontr  13684  hmeores  13686  tgqioo  13918
  Copyright terms: Public domain W3C validator