| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imassrn | GIF version | ||
| Description: The image of a class is a subset of its range. Theorem 3.16(xi) of [Monk1] p. 39. (Contributed by NM, 31-Mar-1995.) |
| Ref | Expression |
|---|---|
| imassrn | ⊢ (𝐴 “ 𝐵) ⊆ ran 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exsimpr 1664 | . . 3 ⊢ (∃𝑥(𝑥 ∈ 𝐵 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴) → ∃𝑥〈𝑥, 𝑦〉 ∈ 𝐴) | |
| 2 | 1 | ss2abi 3296 | . 2 ⊢ {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐵 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴)} ⊆ {𝑦 ∣ ∃𝑥〈𝑥, 𝑦〉 ∈ 𝐴} |
| 3 | dfima3 5071 | . 2 ⊢ (𝐴 “ 𝐵) = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐵 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴)} | |
| 4 | dfrn3 4911 | . 2 ⊢ ran 𝐴 = {𝑦 ∣ ∃𝑥〈𝑥, 𝑦〉 ∈ 𝐴} | |
| 5 | 2, 3, 4 | 3sstr4i 3265 | 1 ⊢ (𝐴 “ 𝐵) ⊆ ran 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ∃wex 1538 ∈ wcel 2200 {cab 2215 ⊆ wss 3197 〈cop 3669 ran crn 4720 “ cima 4722 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-opab 4146 df-xp 4725 df-cnv 4727 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 |
| This theorem is referenced by: imaexg 5082 0ima 5088 cnvimass 5091 fimass 5489 fimacnv 5766 f1opw2 6218 smores2 6446 ecss 6731 f1imaen2g 6953 fopwdom 7005 ssenen 7020 phplem4dom 7031 isinfinf 7067 fiintim 7101 sbthlem2 7133 sbthlemi3 7134 sbthlemi5 7136 sbthlemi6 7137 ctssdccl 7286 ctinf 13009 ssnnctlemct 13025 mhmima 13532 cnptoprest2 14922 hmeontr 14995 hmeores 14997 tgqioo 15237 domomsubct 16396 |
| Copyright terms: Public domain | W3C validator |