| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cc1 | GIF version | ||
| Description: Countable choice in terms of a choice function on a countably infinite set of inhabited sets. (Contributed by Jim Kingdon, 27-Apr-2024.) |
| Ref | Expression |
|---|---|
| cc1 | ⊢ (CCHOICE → ∀𝑥((𝑥 ≈ ω ∧ ∀𝑧 ∈ 𝑥 ∃𝑤 𝑤 ∈ 𝑧) → ∃𝑓∀𝑧 ∈ 𝑥 (𝑓‘𝑧) ∈ 𝑧)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 | . . . . . 6 ⊢ ((CCHOICE ∧ (𝑥 ≈ ω ∧ ∀𝑧 ∈ 𝑥 ∃𝑤 𝑤 ∈ 𝑧)) → CCHOICE) | |
| 2 | simprl 529 | . . . . . 6 ⊢ ((CCHOICE ∧ (𝑥 ≈ ω ∧ ∀𝑧 ∈ 𝑥 ∃𝑤 𝑤 ∈ 𝑧)) → 𝑥 ≈ ω) | |
| 3 | simprr 531 | . . . . . . 7 ⊢ ((CCHOICE ∧ (𝑥 ≈ ω ∧ ∀𝑧 ∈ 𝑥 ∃𝑤 𝑤 ∈ 𝑧)) → ∀𝑧 ∈ 𝑥 ∃𝑤 𝑤 ∈ 𝑧) | |
| 4 | elequ2 2182 | . . . . . . . . 9 ⊢ (𝑧 = 𝑎 → (𝑤 ∈ 𝑧 ↔ 𝑤 ∈ 𝑎)) | |
| 5 | 4 | exbidv 1849 | . . . . . . . 8 ⊢ (𝑧 = 𝑎 → (∃𝑤 𝑤 ∈ 𝑧 ↔ ∃𝑤 𝑤 ∈ 𝑎)) |
| 6 | 5 | cbvralvw 2743 | . . . . . . 7 ⊢ (∀𝑧 ∈ 𝑥 ∃𝑤 𝑤 ∈ 𝑧 ↔ ∀𝑎 ∈ 𝑥 ∃𝑤 𝑤 ∈ 𝑎) |
| 7 | 3, 6 | sylib 122 | . . . . . 6 ⊢ ((CCHOICE ∧ (𝑥 ≈ ω ∧ ∀𝑧 ∈ 𝑥 ∃𝑤 𝑤 ∈ 𝑧)) → ∀𝑎 ∈ 𝑥 ∃𝑤 𝑤 ∈ 𝑎) |
| 8 | 1, 2, 7 | ccfunen 7389 | . . . . 5 ⊢ ((CCHOICE ∧ (𝑥 ≈ ω ∧ ∀𝑧 ∈ 𝑥 ∃𝑤 𝑤 ∈ 𝑧)) → ∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑎 ∈ 𝑥 (𝑓‘𝑎) ∈ 𝑎)) |
| 9 | exsimpr 1642 | . . . . 5 ⊢ (∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑎 ∈ 𝑥 (𝑓‘𝑎) ∈ 𝑎) → ∃𝑓∀𝑎 ∈ 𝑥 (𝑓‘𝑎) ∈ 𝑎) | |
| 10 | 8, 9 | syl 14 | . . . 4 ⊢ ((CCHOICE ∧ (𝑥 ≈ ω ∧ ∀𝑧 ∈ 𝑥 ∃𝑤 𝑤 ∈ 𝑧)) → ∃𝑓∀𝑎 ∈ 𝑥 (𝑓‘𝑎) ∈ 𝑎) |
| 11 | fveq2 5586 | . . . . . . 7 ⊢ (𝑎 = 𝑧 → (𝑓‘𝑎) = (𝑓‘𝑧)) | |
| 12 | id 19 | . . . . . . 7 ⊢ (𝑎 = 𝑧 → 𝑎 = 𝑧) | |
| 13 | 11, 12 | eleq12d 2277 | . . . . . 6 ⊢ (𝑎 = 𝑧 → ((𝑓‘𝑎) ∈ 𝑎 ↔ (𝑓‘𝑧) ∈ 𝑧)) |
| 14 | 13 | cbvralvw 2743 | . . . . 5 ⊢ (∀𝑎 ∈ 𝑥 (𝑓‘𝑎) ∈ 𝑎 ↔ ∀𝑧 ∈ 𝑥 (𝑓‘𝑧) ∈ 𝑧) |
| 15 | 14 | exbii 1629 | . . . 4 ⊢ (∃𝑓∀𝑎 ∈ 𝑥 (𝑓‘𝑎) ∈ 𝑎 ↔ ∃𝑓∀𝑧 ∈ 𝑥 (𝑓‘𝑧) ∈ 𝑧) |
| 16 | 10, 15 | sylib 122 | . . 3 ⊢ ((CCHOICE ∧ (𝑥 ≈ ω ∧ ∀𝑧 ∈ 𝑥 ∃𝑤 𝑤 ∈ 𝑧)) → ∃𝑓∀𝑧 ∈ 𝑥 (𝑓‘𝑧) ∈ 𝑧) |
| 17 | 16 | ex 115 | . 2 ⊢ (CCHOICE → ((𝑥 ≈ ω ∧ ∀𝑧 ∈ 𝑥 ∃𝑤 𝑤 ∈ 𝑧) → ∃𝑓∀𝑧 ∈ 𝑥 (𝑓‘𝑧) ∈ 𝑧)) |
| 18 | 17 | alrimiv 1898 | 1 ⊢ (CCHOICE → ∀𝑥((𝑥 ≈ ω ∧ ∀𝑧 ∈ 𝑥 ∃𝑤 𝑤 ∈ 𝑧) → ∃𝑓∀𝑧 ∈ 𝑥 (𝑓‘𝑧) ∈ 𝑧)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∀wal 1371 ∃wex 1516 ∈ wcel 2177 ∀wral 2485 class class class wbr 4048 ωcom 4643 Fn wfn 5272 ‘cfv 5277 ≈ cen 6835 CCHOICEwacc 7387 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4164 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-un 4485 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-iun 3932 df-br 4049 df-opab 4111 df-mpt 4112 df-id 4345 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 df-fo 5283 df-f1o 5284 df-fv 5285 df-en 6838 df-cc 7388 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |