ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cc1 GIF version

Theorem cc1 7459
Description: Countable choice in terms of a choice function on a countably infinite set of inhabited sets. (Contributed by Jim Kingdon, 27-Apr-2024.)
Assertion
Ref Expression
cc1 (CCHOICE → ∀𝑥((𝑥 ≈ ω ∧ ∀𝑧𝑥𝑤 𝑤𝑧) → ∃𝑓𝑧𝑥 (𝑓𝑧) ∈ 𝑧))
Distinct variable groups:   𝑤,𝑓,𝑧   𝑥,𝑓,𝑧

Proof of Theorem cc1
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . . . . 6 ((CCHOICE ∧ (𝑥 ≈ ω ∧ ∀𝑧𝑥𝑤 𝑤𝑧)) → CCHOICE)
2 simprl 529 . . . . . 6 ((CCHOICE ∧ (𝑥 ≈ ω ∧ ∀𝑧𝑥𝑤 𝑤𝑧)) → 𝑥 ≈ ω)
3 simprr 531 . . . . . . 7 ((CCHOICE ∧ (𝑥 ≈ ω ∧ ∀𝑧𝑥𝑤 𝑤𝑧)) → ∀𝑧𝑥𝑤 𝑤𝑧)
4 elequ2 2205 . . . . . . . . 9 (𝑧 = 𝑎 → (𝑤𝑧𝑤𝑎))
54exbidv 1871 . . . . . . . 8 (𝑧 = 𝑎 → (∃𝑤 𝑤𝑧 ↔ ∃𝑤 𝑤𝑎))
65cbvralvw 2769 . . . . . . 7 (∀𝑧𝑥𝑤 𝑤𝑧 ↔ ∀𝑎𝑥𝑤 𝑤𝑎)
73, 6sylib 122 . . . . . 6 ((CCHOICE ∧ (𝑥 ≈ ω ∧ ∀𝑧𝑥𝑤 𝑤𝑧)) → ∀𝑎𝑥𝑤 𝑤𝑎)
81, 2, 7ccfunen 7458 . . . . 5 ((CCHOICE ∧ (𝑥 ≈ ω ∧ ∀𝑧𝑥𝑤 𝑤𝑧)) → ∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑎𝑥 (𝑓𝑎) ∈ 𝑎))
9 exsimpr 1664 . . . . 5 (∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑎𝑥 (𝑓𝑎) ∈ 𝑎) → ∃𝑓𝑎𝑥 (𝑓𝑎) ∈ 𝑎)
108, 9syl 14 . . . 4 ((CCHOICE ∧ (𝑥 ≈ ω ∧ ∀𝑧𝑥𝑤 𝑤𝑧)) → ∃𝑓𝑎𝑥 (𝑓𝑎) ∈ 𝑎)
11 fveq2 5629 . . . . . . 7 (𝑎 = 𝑧 → (𝑓𝑎) = (𝑓𝑧))
12 id 19 . . . . . . 7 (𝑎 = 𝑧𝑎 = 𝑧)
1311, 12eleq12d 2300 . . . . . 6 (𝑎 = 𝑧 → ((𝑓𝑎) ∈ 𝑎 ↔ (𝑓𝑧) ∈ 𝑧))
1413cbvralvw 2769 . . . . 5 (∀𝑎𝑥 (𝑓𝑎) ∈ 𝑎 ↔ ∀𝑧𝑥 (𝑓𝑧) ∈ 𝑧)
1514exbii 1651 . . . 4 (∃𝑓𝑎𝑥 (𝑓𝑎) ∈ 𝑎 ↔ ∃𝑓𝑧𝑥 (𝑓𝑧) ∈ 𝑧)
1610, 15sylib 122 . . 3 ((CCHOICE ∧ (𝑥 ≈ ω ∧ ∀𝑧𝑥𝑤 𝑤𝑧)) → ∃𝑓𝑧𝑥 (𝑓𝑧) ∈ 𝑧)
1716ex 115 . 2 (CCHOICE → ((𝑥 ≈ ω ∧ ∀𝑧𝑥𝑤 𝑤𝑧) → ∃𝑓𝑧𝑥 (𝑓𝑧) ∈ 𝑧))
1817alrimiv 1920 1 (CCHOICE → ∀𝑥((𝑥 ≈ ω ∧ ∀𝑧𝑥𝑤 𝑤𝑧) → ∃𝑓𝑧𝑥 (𝑓𝑧) ∈ 𝑧))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wal 1393  wex 1538  wcel 2200  wral 2508   class class class wbr 4083  ωcom 4682   Fn wfn 5313  cfv 5318  cen 6893  CCHOICEwacc 7456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-en 6896  df-cc 7457
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator