Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cc1 | GIF version |
Description: Countable choice in terms of a choice function on a countably infinite set of inhabited sets. (Contributed by Jim Kingdon, 27-Apr-2024.) |
Ref | Expression |
---|---|
cc1 | ⊢ (CCHOICE → ∀𝑥((𝑥 ≈ ω ∧ ∀𝑧 ∈ 𝑥 ∃𝑤 𝑤 ∈ 𝑧) → ∃𝑓∀𝑧 ∈ 𝑥 (𝑓‘𝑧) ∈ 𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 109 | . . . . . 6 ⊢ ((CCHOICE ∧ (𝑥 ≈ ω ∧ ∀𝑧 ∈ 𝑥 ∃𝑤 𝑤 ∈ 𝑧)) → CCHOICE) | |
2 | simprl 529 | . . . . . 6 ⊢ ((CCHOICE ∧ (𝑥 ≈ ω ∧ ∀𝑧 ∈ 𝑥 ∃𝑤 𝑤 ∈ 𝑧)) → 𝑥 ≈ ω) | |
3 | simprr 531 | . . . . . . 7 ⊢ ((CCHOICE ∧ (𝑥 ≈ ω ∧ ∀𝑧 ∈ 𝑥 ∃𝑤 𝑤 ∈ 𝑧)) → ∀𝑧 ∈ 𝑥 ∃𝑤 𝑤 ∈ 𝑧) | |
4 | elequ2 2151 | . . . . . . . . 9 ⊢ (𝑧 = 𝑎 → (𝑤 ∈ 𝑧 ↔ 𝑤 ∈ 𝑎)) | |
5 | 4 | exbidv 1823 | . . . . . . . 8 ⊢ (𝑧 = 𝑎 → (∃𝑤 𝑤 ∈ 𝑧 ↔ ∃𝑤 𝑤 ∈ 𝑎)) |
6 | 5 | cbvralvw 2705 | . . . . . . 7 ⊢ (∀𝑧 ∈ 𝑥 ∃𝑤 𝑤 ∈ 𝑧 ↔ ∀𝑎 ∈ 𝑥 ∃𝑤 𝑤 ∈ 𝑎) |
7 | 3, 6 | sylib 122 | . . . . . 6 ⊢ ((CCHOICE ∧ (𝑥 ≈ ω ∧ ∀𝑧 ∈ 𝑥 ∃𝑤 𝑤 ∈ 𝑧)) → ∀𝑎 ∈ 𝑥 ∃𝑤 𝑤 ∈ 𝑎) |
8 | 1, 2, 7 | ccfunen 7238 | . . . . 5 ⊢ ((CCHOICE ∧ (𝑥 ≈ ω ∧ ∀𝑧 ∈ 𝑥 ∃𝑤 𝑤 ∈ 𝑧)) → ∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑎 ∈ 𝑥 (𝑓‘𝑎) ∈ 𝑎)) |
9 | exsimpr 1616 | . . . . 5 ⊢ (∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑎 ∈ 𝑥 (𝑓‘𝑎) ∈ 𝑎) → ∃𝑓∀𝑎 ∈ 𝑥 (𝑓‘𝑎) ∈ 𝑎) | |
10 | 8, 9 | syl 14 | . . . 4 ⊢ ((CCHOICE ∧ (𝑥 ≈ ω ∧ ∀𝑧 ∈ 𝑥 ∃𝑤 𝑤 ∈ 𝑧)) → ∃𝑓∀𝑎 ∈ 𝑥 (𝑓‘𝑎) ∈ 𝑎) |
11 | fveq2 5507 | . . . . . . 7 ⊢ (𝑎 = 𝑧 → (𝑓‘𝑎) = (𝑓‘𝑧)) | |
12 | id 19 | . . . . . . 7 ⊢ (𝑎 = 𝑧 → 𝑎 = 𝑧) | |
13 | 11, 12 | eleq12d 2246 | . . . . . 6 ⊢ (𝑎 = 𝑧 → ((𝑓‘𝑎) ∈ 𝑎 ↔ (𝑓‘𝑧) ∈ 𝑧)) |
14 | 13 | cbvralvw 2705 | . . . . 5 ⊢ (∀𝑎 ∈ 𝑥 (𝑓‘𝑎) ∈ 𝑎 ↔ ∀𝑧 ∈ 𝑥 (𝑓‘𝑧) ∈ 𝑧) |
15 | 14 | exbii 1603 | . . . 4 ⊢ (∃𝑓∀𝑎 ∈ 𝑥 (𝑓‘𝑎) ∈ 𝑎 ↔ ∃𝑓∀𝑧 ∈ 𝑥 (𝑓‘𝑧) ∈ 𝑧) |
16 | 10, 15 | sylib 122 | . . 3 ⊢ ((CCHOICE ∧ (𝑥 ≈ ω ∧ ∀𝑧 ∈ 𝑥 ∃𝑤 𝑤 ∈ 𝑧)) → ∃𝑓∀𝑧 ∈ 𝑥 (𝑓‘𝑧) ∈ 𝑧) |
17 | 16 | ex 115 | . 2 ⊢ (CCHOICE → ((𝑥 ≈ ω ∧ ∀𝑧 ∈ 𝑥 ∃𝑤 𝑤 ∈ 𝑧) → ∃𝑓∀𝑧 ∈ 𝑥 (𝑓‘𝑧) ∈ 𝑧)) |
18 | 17 | alrimiv 1872 | 1 ⊢ (CCHOICE → ∀𝑥((𝑥 ≈ ω ∧ ∀𝑧 ∈ 𝑥 ∃𝑤 𝑤 ∈ 𝑧) → ∃𝑓∀𝑧 ∈ 𝑥 (𝑓‘𝑧) ∈ 𝑧)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∀wal 1351 ∃wex 1490 ∈ wcel 2146 ∀wral 2453 class class class wbr 3998 ωcom 4583 Fn wfn 5203 ‘cfv 5208 ≈ cen 6728 CCHOICEwacc 7236 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-coll 4113 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-reu 2460 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-en 6731 df-cc 7237 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |