![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cc1 | GIF version |
Description: Countable choice in terms of a choice function on a countably infinite set of inhabited sets. (Contributed by Jim Kingdon, 27-Apr-2024.) |
Ref | Expression |
---|---|
cc1 | ⊢ (CCHOICE → ∀𝑥((𝑥 ≈ ω ∧ ∀𝑧 ∈ 𝑥 ∃𝑤 𝑤 ∈ 𝑧) → ∃𝑓∀𝑧 ∈ 𝑥 (𝑓‘𝑧) ∈ 𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 109 | . . . . . 6 ⊢ ((CCHOICE ∧ (𝑥 ≈ ω ∧ ∀𝑧 ∈ 𝑥 ∃𝑤 𝑤 ∈ 𝑧)) → CCHOICE) | |
2 | simprl 529 | . . . . . 6 ⊢ ((CCHOICE ∧ (𝑥 ≈ ω ∧ ∀𝑧 ∈ 𝑥 ∃𝑤 𝑤 ∈ 𝑧)) → 𝑥 ≈ ω) | |
3 | simprr 531 | . . . . . . 7 ⊢ ((CCHOICE ∧ (𝑥 ≈ ω ∧ ∀𝑧 ∈ 𝑥 ∃𝑤 𝑤 ∈ 𝑧)) → ∀𝑧 ∈ 𝑥 ∃𝑤 𝑤 ∈ 𝑧) | |
4 | elequ2 2169 | . . . . . . . . 9 ⊢ (𝑧 = 𝑎 → (𝑤 ∈ 𝑧 ↔ 𝑤 ∈ 𝑎)) | |
5 | 4 | exbidv 1836 | . . . . . . . 8 ⊢ (𝑧 = 𝑎 → (∃𝑤 𝑤 ∈ 𝑧 ↔ ∃𝑤 𝑤 ∈ 𝑎)) |
6 | 5 | cbvralvw 2730 | . . . . . . 7 ⊢ (∀𝑧 ∈ 𝑥 ∃𝑤 𝑤 ∈ 𝑧 ↔ ∀𝑎 ∈ 𝑥 ∃𝑤 𝑤 ∈ 𝑎) |
7 | 3, 6 | sylib 122 | . . . . . 6 ⊢ ((CCHOICE ∧ (𝑥 ≈ ω ∧ ∀𝑧 ∈ 𝑥 ∃𝑤 𝑤 ∈ 𝑧)) → ∀𝑎 ∈ 𝑥 ∃𝑤 𝑤 ∈ 𝑎) |
8 | 1, 2, 7 | ccfunen 7326 | . . . . 5 ⊢ ((CCHOICE ∧ (𝑥 ≈ ω ∧ ∀𝑧 ∈ 𝑥 ∃𝑤 𝑤 ∈ 𝑧)) → ∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑎 ∈ 𝑥 (𝑓‘𝑎) ∈ 𝑎)) |
9 | exsimpr 1629 | . . . . 5 ⊢ (∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑎 ∈ 𝑥 (𝑓‘𝑎) ∈ 𝑎) → ∃𝑓∀𝑎 ∈ 𝑥 (𝑓‘𝑎) ∈ 𝑎) | |
10 | 8, 9 | syl 14 | . . . 4 ⊢ ((CCHOICE ∧ (𝑥 ≈ ω ∧ ∀𝑧 ∈ 𝑥 ∃𝑤 𝑤 ∈ 𝑧)) → ∃𝑓∀𝑎 ∈ 𝑥 (𝑓‘𝑎) ∈ 𝑎) |
11 | fveq2 5555 | . . . . . . 7 ⊢ (𝑎 = 𝑧 → (𝑓‘𝑎) = (𝑓‘𝑧)) | |
12 | id 19 | . . . . . . 7 ⊢ (𝑎 = 𝑧 → 𝑎 = 𝑧) | |
13 | 11, 12 | eleq12d 2264 | . . . . . 6 ⊢ (𝑎 = 𝑧 → ((𝑓‘𝑎) ∈ 𝑎 ↔ (𝑓‘𝑧) ∈ 𝑧)) |
14 | 13 | cbvralvw 2730 | . . . . 5 ⊢ (∀𝑎 ∈ 𝑥 (𝑓‘𝑎) ∈ 𝑎 ↔ ∀𝑧 ∈ 𝑥 (𝑓‘𝑧) ∈ 𝑧) |
15 | 14 | exbii 1616 | . . . 4 ⊢ (∃𝑓∀𝑎 ∈ 𝑥 (𝑓‘𝑎) ∈ 𝑎 ↔ ∃𝑓∀𝑧 ∈ 𝑥 (𝑓‘𝑧) ∈ 𝑧) |
16 | 10, 15 | sylib 122 | . . 3 ⊢ ((CCHOICE ∧ (𝑥 ≈ ω ∧ ∀𝑧 ∈ 𝑥 ∃𝑤 𝑤 ∈ 𝑧)) → ∃𝑓∀𝑧 ∈ 𝑥 (𝑓‘𝑧) ∈ 𝑧) |
17 | 16 | ex 115 | . 2 ⊢ (CCHOICE → ((𝑥 ≈ ω ∧ ∀𝑧 ∈ 𝑥 ∃𝑤 𝑤 ∈ 𝑧) → ∃𝑓∀𝑧 ∈ 𝑥 (𝑓‘𝑧) ∈ 𝑧)) |
18 | 17 | alrimiv 1885 | 1 ⊢ (CCHOICE → ∀𝑥((𝑥 ≈ ω ∧ ∀𝑧 ∈ 𝑥 ∃𝑤 𝑤 ∈ 𝑧) → ∃𝑓∀𝑧 ∈ 𝑥 (𝑓‘𝑧) ∈ 𝑧)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∀wal 1362 ∃wex 1503 ∈ wcel 2164 ∀wral 2472 class class class wbr 4030 ωcom 4623 Fn wfn 5250 ‘cfv 5255 ≈ cen 6794 CCHOICEwacc 7324 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-en 6797 df-cc 7325 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |