Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cc1 | GIF version |
Description: Countable choice in terms of a choice function on a countably infinite set of inhabited sets. (Contributed by Jim Kingdon, 27-Apr-2024.) |
Ref | Expression |
---|---|
cc1 | ⊢ (CCHOICE → ∀𝑥((𝑥 ≈ ω ∧ ∀𝑧 ∈ 𝑥 ∃𝑤 𝑤 ∈ 𝑧) → ∃𝑓∀𝑧 ∈ 𝑥 (𝑓‘𝑧) ∈ 𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 108 | . . . . . 6 ⊢ ((CCHOICE ∧ (𝑥 ≈ ω ∧ ∀𝑧 ∈ 𝑥 ∃𝑤 𝑤 ∈ 𝑧)) → CCHOICE) | |
2 | simprl 521 | . . . . . 6 ⊢ ((CCHOICE ∧ (𝑥 ≈ ω ∧ ∀𝑧 ∈ 𝑥 ∃𝑤 𝑤 ∈ 𝑧)) → 𝑥 ≈ ω) | |
3 | simprr 522 | . . . . . . 7 ⊢ ((CCHOICE ∧ (𝑥 ≈ ω ∧ ∀𝑧 ∈ 𝑥 ∃𝑤 𝑤 ∈ 𝑧)) → ∀𝑧 ∈ 𝑥 ∃𝑤 𝑤 ∈ 𝑧) | |
4 | elequ2 2141 | . . . . . . . . 9 ⊢ (𝑧 = 𝑎 → (𝑤 ∈ 𝑧 ↔ 𝑤 ∈ 𝑎)) | |
5 | 4 | exbidv 1813 | . . . . . . . 8 ⊢ (𝑧 = 𝑎 → (∃𝑤 𝑤 ∈ 𝑧 ↔ ∃𝑤 𝑤 ∈ 𝑎)) |
6 | 5 | cbvralvw 2696 | . . . . . . 7 ⊢ (∀𝑧 ∈ 𝑥 ∃𝑤 𝑤 ∈ 𝑧 ↔ ∀𝑎 ∈ 𝑥 ∃𝑤 𝑤 ∈ 𝑎) |
7 | 3, 6 | sylib 121 | . . . . . 6 ⊢ ((CCHOICE ∧ (𝑥 ≈ ω ∧ ∀𝑧 ∈ 𝑥 ∃𝑤 𝑤 ∈ 𝑧)) → ∀𝑎 ∈ 𝑥 ∃𝑤 𝑤 ∈ 𝑎) |
8 | 1, 2, 7 | ccfunen 7205 | . . . . 5 ⊢ ((CCHOICE ∧ (𝑥 ≈ ω ∧ ∀𝑧 ∈ 𝑥 ∃𝑤 𝑤 ∈ 𝑧)) → ∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑎 ∈ 𝑥 (𝑓‘𝑎) ∈ 𝑎)) |
9 | exsimpr 1606 | . . . . 5 ⊢ (∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑎 ∈ 𝑥 (𝑓‘𝑎) ∈ 𝑎) → ∃𝑓∀𝑎 ∈ 𝑥 (𝑓‘𝑎) ∈ 𝑎) | |
10 | 8, 9 | syl 14 | . . . 4 ⊢ ((CCHOICE ∧ (𝑥 ≈ ω ∧ ∀𝑧 ∈ 𝑥 ∃𝑤 𝑤 ∈ 𝑧)) → ∃𝑓∀𝑎 ∈ 𝑥 (𝑓‘𝑎) ∈ 𝑎) |
11 | fveq2 5486 | . . . . . . 7 ⊢ (𝑎 = 𝑧 → (𝑓‘𝑎) = (𝑓‘𝑧)) | |
12 | id 19 | . . . . . . 7 ⊢ (𝑎 = 𝑧 → 𝑎 = 𝑧) | |
13 | 11, 12 | eleq12d 2237 | . . . . . 6 ⊢ (𝑎 = 𝑧 → ((𝑓‘𝑎) ∈ 𝑎 ↔ (𝑓‘𝑧) ∈ 𝑧)) |
14 | 13 | cbvralvw 2696 | . . . . 5 ⊢ (∀𝑎 ∈ 𝑥 (𝑓‘𝑎) ∈ 𝑎 ↔ ∀𝑧 ∈ 𝑥 (𝑓‘𝑧) ∈ 𝑧) |
15 | 14 | exbii 1593 | . . . 4 ⊢ (∃𝑓∀𝑎 ∈ 𝑥 (𝑓‘𝑎) ∈ 𝑎 ↔ ∃𝑓∀𝑧 ∈ 𝑥 (𝑓‘𝑧) ∈ 𝑧) |
16 | 10, 15 | sylib 121 | . . 3 ⊢ ((CCHOICE ∧ (𝑥 ≈ ω ∧ ∀𝑧 ∈ 𝑥 ∃𝑤 𝑤 ∈ 𝑧)) → ∃𝑓∀𝑧 ∈ 𝑥 (𝑓‘𝑧) ∈ 𝑧) |
17 | 16 | ex 114 | . 2 ⊢ (CCHOICE → ((𝑥 ≈ ω ∧ ∀𝑧 ∈ 𝑥 ∃𝑤 𝑤 ∈ 𝑧) → ∃𝑓∀𝑧 ∈ 𝑥 (𝑓‘𝑧) ∈ 𝑧)) |
18 | 17 | alrimiv 1862 | 1 ⊢ (CCHOICE → ∀𝑥((𝑥 ≈ ω ∧ ∀𝑧 ∈ 𝑥 ∃𝑤 𝑤 ∈ 𝑧) → ∃𝑓∀𝑧 ∈ 𝑥 (𝑓‘𝑧) ∈ 𝑧)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∀wal 1341 ∃wex 1480 ∈ wcel 2136 ∀wral 2444 class class class wbr 3982 ωcom 4567 Fn wfn 5183 ‘cfv 5188 ≈ cen 6704 CCHOICEwacc 7203 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-en 6707 df-cc 7204 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |