Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cc1 | GIF version |
Description: Countable choice in terms of a choice function on a countably infinite set of inhabited sets. (Contributed by Jim Kingdon, 27-Apr-2024.) |
Ref | Expression |
---|---|
cc1 | ⊢ (CCHOICE → ∀𝑥((𝑥 ≈ ω ∧ ∀𝑧 ∈ 𝑥 ∃𝑤 𝑤 ∈ 𝑧) → ∃𝑓∀𝑧 ∈ 𝑥 (𝑓‘𝑧) ∈ 𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 108 | . . . . . 6 ⊢ ((CCHOICE ∧ (𝑥 ≈ ω ∧ ∀𝑧 ∈ 𝑥 ∃𝑤 𝑤 ∈ 𝑧)) → CCHOICE) | |
2 | simprl 526 | . . . . . 6 ⊢ ((CCHOICE ∧ (𝑥 ≈ ω ∧ ∀𝑧 ∈ 𝑥 ∃𝑤 𝑤 ∈ 𝑧)) → 𝑥 ≈ ω) | |
3 | simprr 527 | . . . . . . 7 ⊢ ((CCHOICE ∧ (𝑥 ≈ ω ∧ ∀𝑧 ∈ 𝑥 ∃𝑤 𝑤 ∈ 𝑧)) → ∀𝑧 ∈ 𝑥 ∃𝑤 𝑤 ∈ 𝑧) | |
4 | elequ2 2146 | . . . . . . . . 9 ⊢ (𝑧 = 𝑎 → (𝑤 ∈ 𝑧 ↔ 𝑤 ∈ 𝑎)) | |
5 | 4 | exbidv 1818 | . . . . . . . 8 ⊢ (𝑧 = 𝑎 → (∃𝑤 𝑤 ∈ 𝑧 ↔ ∃𝑤 𝑤 ∈ 𝑎)) |
6 | 5 | cbvralvw 2700 | . . . . . . 7 ⊢ (∀𝑧 ∈ 𝑥 ∃𝑤 𝑤 ∈ 𝑧 ↔ ∀𝑎 ∈ 𝑥 ∃𝑤 𝑤 ∈ 𝑎) |
7 | 3, 6 | sylib 121 | . . . . . 6 ⊢ ((CCHOICE ∧ (𝑥 ≈ ω ∧ ∀𝑧 ∈ 𝑥 ∃𝑤 𝑤 ∈ 𝑧)) → ∀𝑎 ∈ 𝑥 ∃𝑤 𝑤 ∈ 𝑎) |
8 | 1, 2, 7 | ccfunen 7226 | . . . . 5 ⊢ ((CCHOICE ∧ (𝑥 ≈ ω ∧ ∀𝑧 ∈ 𝑥 ∃𝑤 𝑤 ∈ 𝑧)) → ∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑎 ∈ 𝑥 (𝑓‘𝑎) ∈ 𝑎)) |
9 | exsimpr 1611 | . . . . 5 ⊢ (∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑎 ∈ 𝑥 (𝑓‘𝑎) ∈ 𝑎) → ∃𝑓∀𝑎 ∈ 𝑥 (𝑓‘𝑎) ∈ 𝑎) | |
10 | 8, 9 | syl 14 | . . . 4 ⊢ ((CCHOICE ∧ (𝑥 ≈ ω ∧ ∀𝑧 ∈ 𝑥 ∃𝑤 𝑤 ∈ 𝑧)) → ∃𝑓∀𝑎 ∈ 𝑥 (𝑓‘𝑎) ∈ 𝑎) |
11 | fveq2 5496 | . . . . . . 7 ⊢ (𝑎 = 𝑧 → (𝑓‘𝑎) = (𝑓‘𝑧)) | |
12 | id 19 | . . . . . . 7 ⊢ (𝑎 = 𝑧 → 𝑎 = 𝑧) | |
13 | 11, 12 | eleq12d 2241 | . . . . . 6 ⊢ (𝑎 = 𝑧 → ((𝑓‘𝑎) ∈ 𝑎 ↔ (𝑓‘𝑧) ∈ 𝑧)) |
14 | 13 | cbvralvw 2700 | . . . . 5 ⊢ (∀𝑎 ∈ 𝑥 (𝑓‘𝑎) ∈ 𝑎 ↔ ∀𝑧 ∈ 𝑥 (𝑓‘𝑧) ∈ 𝑧) |
15 | 14 | exbii 1598 | . . . 4 ⊢ (∃𝑓∀𝑎 ∈ 𝑥 (𝑓‘𝑎) ∈ 𝑎 ↔ ∃𝑓∀𝑧 ∈ 𝑥 (𝑓‘𝑧) ∈ 𝑧) |
16 | 10, 15 | sylib 121 | . . 3 ⊢ ((CCHOICE ∧ (𝑥 ≈ ω ∧ ∀𝑧 ∈ 𝑥 ∃𝑤 𝑤 ∈ 𝑧)) → ∃𝑓∀𝑧 ∈ 𝑥 (𝑓‘𝑧) ∈ 𝑧) |
17 | 16 | ex 114 | . 2 ⊢ (CCHOICE → ((𝑥 ≈ ω ∧ ∀𝑧 ∈ 𝑥 ∃𝑤 𝑤 ∈ 𝑧) → ∃𝑓∀𝑧 ∈ 𝑥 (𝑓‘𝑧) ∈ 𝑧)) |
18 | 17 | alrimiv 1867 | 1 ⊢ (CCHOICE → ∀𝑥((𝑥 ≈ ω ∧ ∀𝑧 ∈ 𝑥 ∃𝑤 𝑤 ∈ 𝑧) → ∃𝑓∀𝑧 ∈ 𝑥 (𝑓‘𝑧) ∈ 𝑧)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∀wal 1346 ∃wex 1485 ∈ wcel 2141 ∀wral 2448 class class class wbr 3989 ωcom 4574 Fn wfn 5193 ‘cfv 5198 ≈ cen 6716 CCHOICEwacc 7224 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-en 6719 df-cc 7225 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |