ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cc1 GIF version

Theorem cc1 7197
Description: Countable choice in terms of a choice function on a countably infinite set of inhabited sets. (Contributed by Jim Kingdon, 27-Apr-2024.)
Assertion
Ref Expression
cc1 (CCHOICE → ∀𝑥((𝑥 ≈ ω ∧ ∀𝑧𝑥𝑤 𝑤𝑧) → ∃𝑓𝑧𝑥 (𝑓𝑧) ∈ 𝑧))
Distinct variable groups:   𝑤,𝑓,𝑧   𝑥,𝑓,𝑧

Proof of Theorem cc1
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 simpl 108 . . . . . 6 ((CCHOICE ∧ (𝑥 ≈ ω ∧ ∀𝑧𝑥𝑤 𝑤𝑧)) → CCHOICE)
2 simprl 521 . . . . . 6 ((CCHOICE ∧ (𝑥 ≈ ω ∧ ∀𝑧𝑥𝑤 𝑤𝑧)) → 𝑥 ≈ ω)
3 simprr 522 . . . . . . 7 ((CCHOICE ∧ (𝑥 ≈ ω ∧ ∀𝑧𝑥𝑤 𝑤𝑧)) → ∀𝑧𝑥𝑤 𝑤𝑧)
4 elequ2 2140 . . . . . . . . 9 (𝑧 = 𝑎 → (𝑤𝑧𝑤𝑎))
54exbidv 1812 . . . . . . . 8 (𝑧 = 𝑎 → (∃𝑤 𝑤𝑧 ↔ ∃𝑤 𝑤𝑎))
65cbvralvw 2693 . . . . . . 7 (∀𝑧𝑥𝑤 𝑤𝑧 ↔ ∀𝑎𝑥𝑤 𝑤𝑎)
73, 6sylib 121 . . . . . 6 ((CCHOICE ∧ (𝑥 ≈ ω ∧ ∀𝑧𝑥𝑤 𝑤𝑧)) → ∀𝑎𝑥𝑤 𝑤𝑎)
81, 2, 7ccfunen 7196 . . . . 5 ((CCHOICE ∧ (𝑥 ≈ ω ∧ ∀𝑧𝑥𝑤 𝑤𝑧)) → ∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑎𝑥 (𝑓𝑎) ∈ 𝑎))
9 exsimpr 1605 . . . . 5 (∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑎𝑥 (𝑓𝑎) ∈ 𝑎) → ∃𝑓𝑎𝑥 (𝑓𝑎) ∈ 𝑎)
108, 9syl 14 . . . 4 ((CCHOICE ∧ (𝑥 ≈ ω ∧ ∀𝑧𝑥𝑤 𝑤𝑧)) → ∃𝑓𝑎𝑥 (𝑓𝑎) ∈ 𝑎)
11 fveq2 5480 . . . . . . 7 (𝑎 = 𝑧 → (𝑓𝑎) = (𝑓𝑧))
12 id 19 . . . . . . 7 (𝑎 = 𝑧𝑎 = 𝑧)
1311, 12eleq12d 2235 . . . . . 6 (𝑎 = 𝑧 → ((𝑓𝑎) ∈ 𝑎 ↔ (𝑓𝑧) ∈ 𝑧))
1413cbvralvw 2693 . . . . 5 (∀𝑎𝑥 (𝑓𝑎) ∈ 𝑎 ↔ ∀𝑧𝑥 (𝑓𝑧) ∈ 𝑧)
1514exbii 1592 . . . 4 (∃𝑓𝑎𝑥 (𝑓𝑎) ∈ 𝑎 ↔ ∃𝑓𝑧𝑥 (𝑓𝑧) ∈ 𝑧)
1610, 15sylib 121 . . 3 ((CCHOICE ∧ (𝑥 ≈ ω ∧ ∀𝑧𝑥𝑤 𝑤𝑧)) → ∃𝑓𝑧𝑥 (𝑓𝑧) ∈ 𝑧)
1716ex 114 . 2 (CCHOICE → ((𝑥 ≈ ω ∧ ∀𝑧𝑥𝑤 𝑤𝑧) → ∃𝑓𝑧𝑥 (𝑓𝑧) ∈ 𝑧))
1817alrimiv 1861 1 (CCHOICE → ∀𝑥((𝑥 ≈ ω ∧ ∀𝑧𝑥𝑤 𝑤𝑧) → ∃𝑓𝑧𝑥 (𝑓𝑧) ∈ 𝑧))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wal 1340  wex 1479  wcel 2135  wral 2442   class class class wbr 3976  ωcom 4561   Fn wfn 5177  cfv 5182  cen 6695  CCHOICEwacc 7194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4091  ax-sep 4094  ax-pow 4147  ax-pr 4181  ax-un 4405
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-un 3115  df-in 3117  df-ss 3124  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-id 4265  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-en 6698  df-cc 7195
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator