Step | Hyp | Ref
| Expression |
1 | | df-fv 5206 |
. . . . . . . . . 10
⊢ ((𝐹 ↾ 𝐵)‘𝐴) = (℩𝑥𝐴(𝐹 ↾ 𝐵)𝑥) |
2 | | df-iota 5160 |
. . . . . . . . . 10
⊢
(℩𝑥𝐴(𝐹 ↾ 𝐵)𝑥) = ∪ {𝑦 ∣ {𝑥 ∣ 𝐴(𝐹 ↾ 𝐵)𝑥} = {𝑦}} |
3 | 1, 2 | eqtri 2191 |
. . . . . . . . 9
⊢ ((𝐹 ↾ 𝐵)‘𝐴) = ∪ {𝑦 ∣ {𝑥 ∣ 𝐴(𝐹 ↾ 𝐵)𝑥} = {𝑦}} |
4 | 3 | eleq2i 2237 |
. . . . . . . 8
⊢ (𝑧 ∈ ((𝐹 ↾ 𝐵)‘𝐴) ↔ 𝑧 ∈ ∪ {𝑦 ∣ {𝑥 ∣ 𝐴(𝐹 ↾ 𝐵)𝑥} = {𝑦}}) |
5 | | eluni 3799 |
. . . . . . . 8
⊢ (𝑧 ∈ ∪ {𝑦
∣ {𝑥 ∣ 𝐴(𝐹 ↾ 𝐵)𝑥} = {𝑦}} ↔ ∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ {𝑦 ∣ {𝑥 ∣ 𝐴(𝐹 ↾ 𝐵)𝑥} = {𝑦}})) |
6 | 4, 5 | bitri 183 |
. . . . . . 7
⊢ (𝑧 ∈ ((𝐹 ↾ 𝐵)‘𝐴) ↔ ∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ {𝑦 ∣ {𝑥 ∣ 𝐴(𝐹 ↾ 𝐵)𝑥} = {𝑦}})) |
7 | | exsimpr 1611 |
. . . . . . 7
⊢
(∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ {𝑦 ∣ {𝑥 ∣ 𝐴(𝐹 ↾ 𝐵)𝑥} = {𝑦}}) → ∃𝑤 𝑤 ∈ {𝑦 ∣ {𝑥 ∣ 𝐴(𝐹 ↾ 𝐵)𝑥} = {𝑦}}) |
8 | 6, 7 | sylbi 120 |
. . . . . 6
⊢ (𝑧 ∈ ((𝐹 ↾ 𝐵)‘𝐴) → ∃𝑤 𝑤 ∈ {𝑦 ∣ {𝑥 ∣ 𝐴(𝐹 ↾ 𝐵)𝑥} = {𝑦}}) |
9 | | df-clab 2157 |
. . . . . . . 8
⊢ (𝑤 ∈ {𝑦 ∣ {𝑥 ∣ 𝐴(𝐹 ↾ 𝐵)𝑥} = {𝑦}} ↔ [𝑤 / 𝑦]{𝑥 ∣ 𝐴(𝐹 ↾ 𝐵)𝑥} = {𝑦}) |
10 | | nfv 1521 |
. . . . . . . . 9
⊢
Ⅎ𝑦{𝑥 ∣ 𝐴(𝐹 ↾ 𝐵)𝑥} = {𝑤} |
11 | | sneq 3594 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑤 → {𝑦} = {𝑤}) |
12 | 11 | eqeq2d 2182 |
. . . . . . . . 9
⊢ (𝑦 = 𝑤 → ({𝑥 ∣ 𝐴(𝐹 ↾ 𝐵)𝑥} = {𝑦} ↔ {𝑥 ∣ 𝐴(𝐹 ↾ 𝐵)𝑥} = {𝑤})) |
13 | 10, 12 | sbie 1784 |
. . . . . . . 8
⊢ ([𝑤 / 𝑦]{𝑥 ∣ 𝐴(𝐹 ↾ 𝐵)𝑥} = {𝑦} ↔ {𝑥 ∣ 𝐴(𝐹 ↾ 𝐵)𝑥} = {𝑤}) |
14 | 9, 13 | bitri 183 |
. . . . . . 7
⊢ (𝑤 ∈ {𝑦 ∣ {𝑥 ∣ 𝐴(𝐹 ↾ 𝐵)𝑥} = {𝑦}} ↔ {𝑥 ∣ 𝐴(𝐹 ↾ 𝐵)𝑥} = {𝑤}) |
15 | 14 | exbii 1598 |
. . . . . 6
⊢
(∃𝑤 𝑤 ∈ {𝑦 ∣ {𝑥 ∣ 𝐴(𝐹 ↾ 𝐵)𝑥} = {𝑦}} ↔ ∃𝑤{𝑥 ∣ 𝐴(𝐹 ↾ 𝐵)𝑥} = {𝑤}) |
16 | 8, 15 | sylib 121 |
. . . . 5
⊢ (𝑧 ∈ ((𝐹 ↾ 𝐵)‘𝐴) → ∃𝑤{𝑥 ∣ 𝐴(𝐹 ↾ 𝐵)𝑥} = {𝑤}) |
17 | | euabsn2 3652 |
. . . . 5
⊢
(∃!𝑥 𝐴(𝐹 ↾ 𝐵)𝑥 ↔ ∃𝑤{𝑥 ∣ 𝐴(𝐹 ↾ 𝐵)𝑥} = {𝑤}) |
18 | 16, 17 | sylibr 133 |
. . . 4
⊢ (𝑧 ∈ ((𝐹 ↾ 𝐵)‘𝐴) → ∃!𝑥 𝐴(𝐹 ↾ 𝐵)𝑥) |
19 | | euex 2049 |
. . . 4
⊢
(∃!𝑥 𝐴(𝐹 ↾ 𝐵)𝑥 → ∃𝑥 𝐴(𝐹 ↾ 𝐵)𝑥) |
20 | | df-br 3990 |
. . . . . . . 8
⊢ (𝐴(𝐹 ↾ 𝐵)𝑥 ↔ 〈𝐴, 𝑥〉 ∈ (𝐹 ↾ 𝐵)) |
21 | | df-res 4623 |
. . . . . . . . 9
⊢ (𝐹 ↾ 𝐵) = (𝐹 ∩ (𝐵 × V)) |
22 | 21 | eleq2i 2237 |
. . . . . . . 8
⊢
(〈𝐴, 𝑥〉 ∈ (𝐹 ↾ 𝐵) ↔ 〈𝐴, 𝑥〉 ∈ (𝐹 ∩ (𝐵 × V))) |
23 | 20, 22 | bitri 183 |
. . . . . . 7
⊢ (𝐴(𝐹 ↾ 𝐵)𝑥 ↔ 〈𝐴, 𝑥〉 ∈ (𝐹 ∩ (𝐵 × V))) |
24 | | elin 3310 |
. . . . . . . 8
⊢
(〈𝐴, 𝑥〉 ∈ (𝐹 ∩ (𝐵 × V)) ↔ (〈𝐴, 𝑥〉 ∈ 𝐹 ∧ 〈𝐴, 𝑥〉 ∈ (𝐵 × V))) |
25 | 24 | simprbi 273 |
. . . . . . 7
⊢
(〈𝐴, 𝑥〉 ∈ (𝐹 ∩ (𝐵 × V)) → 〈𝐴, 𝑥〉 ∈ (𝐵 × V)) |
26 | 23, 25 | sylbi 120 |
. . . . . 6
⊢ (𝐴(𝐹 ↾ 𝐵)𝑥 → 〈𝐴, 𝑥〉 ∈ (𝐵 × V)) |
27 | | opelxp1 4645 |
. . . . . 6
⊢
(〈𝐴, 𝑥〉 ∈ (𝐵 × V) → 𝐴 ∈ 𝐵) |
28 | 26, 27 | syl 14 |
. . . . 5
⊢ (𝐴(𝐹 ↾ 𝐵)𝑥 → 𝐴 ∈ 𝐵) |
29 | 28 | exlimiv 1591 |
. . . 4
⊢
(∃𝑥 𝐴(𝐹 ↾ 𝐵)𝑥 → 𝐴 ∈ 𝐵) |
30 | 18, 19, 29 | 3syl 17 |
. . 3
⊢ (𝑧 ∈ ((𝐹 ↾ 𝐵)‘𝐴) → 𝐴 ∈ 𝐵) |
31 | 30 | con3i 627 |
. 2
⊢ (¬
𝐴 ∈ 𝐵 → ¬ 𝑧 ∈ ((𝐹 ↾ 𝐵)‘𝐴)) |
32 | 31 | eq0rdv 3459 |
1
⊢ (¬
𝐴 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝐴) = ∅) |