ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfvres GIF version

Theorem nfvres 5610
Description: The value of a non-member of a restriction is the empty set. (Contributed by NM, 13-Nov-1995.)
Assertion
Ref Expression
nfvres 𝐴𝐵 → ((𝐹𝐵)‘𝐴) = ∅)

Proof of Theorem nfvres
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fv 5279 . . . . . . . . . 10 ((𝐹𝐵)‘𝐴) = (℩𝑥𝐴(𝐹𝐵)𝑥)
2 df-iota 5232 . . . . . . . . . 10 (℩𝑥𝐴(𝐹𝐵)𝑥) = {𝑦 ∣ {𝑥𝐴(𝐹𝐵)𝑥} = {𝑦}}
31, 2eqtri 2226 . . . . . . . . 9 ((𝐹𝐵)‘𝐴) = {𝑦 ∣ {𝑥𝐴(𝐹𝐵)𝑥} = {𝑦}}
43eleq2i 2272 . . . . . . . 8 (𝑧 ∈ ((𝐹𝐵)‘𝐴) ↔ 𝑧 {𝑦 ∣ {𝑥𝐴(𝐹𝐵)𝑥} = {𝑦}})
5 eluni 3853 . . . . . . . 8 (𝑧 {𝑦 ∣ {𝑥𝐴(𝐹𝐵)𝑥} = {𝑦}} ↔ ∃𝑤(𝑧𝑤𝑤 ∈ {𝑦 ∣ {𝑥𝐴(𝐹𝐵)𝑥} = {𝑦}}))
64, 5bitri 184 . . . . . . 7 (𝑧 ∈ ((𝐹𝐵)‘𝐴) ↔ ∃𝑤(𝑧𝑤𝑤 ∈ {𝑦 ∣ {𝑥𝐴(𝐹𝐵)𝑥} = {𝑦}}))
7 exsimpr 1641 . . . . . . 7 (∃𝑤(𝑧𝑤𝑤 ∈ {𝑦 ∣ {𝑥𝐴(𝐹𝐵)𝑥} = {𝑦}}) → ∃𝑤 𝑤 ∈ {𝑦 ∣ {𝑥𝐴(𝐹𝐵)𝑥} = {𝑦}})
86, 7sylbi 121 . . . . . 6 (𝑧 ∈ ((𝐹𝐵)‘𝐴) → ∃𝑤 𝑤 ∈ {𝑦 ∣ {𝑥𝐴(𝐹𝐵)𝑥} = {𝑦}})
9 df-clab 2192 . . . . . . . 8 (𝑤 ∈ {𝑦 ∣ {𝑥𝐴(𝐹𝐵)𝑥} = {𝑦}} ↔ [𝑤 / 𝑦]{𝑥𝐴(𝐹𝐵)𝑥} = {𝑦})
10 nfv 1551 . . . . . . . . 9 𝑦{𝑥𝐴(𝐹𝐵)𝑥} = {𝑤}
11 sneq 3644 . . . . . . . . . 10 (𝑦 = 𝑤 → {𝑦} = {𝑤})
1211eqeq2d 2217 . . . . . . . . 9 (𝑦 = 𝑤 → ({𝑥𝐴(𝐹𝐵)𝑥} = {𝑦} ↔ {𝑥𝐴(𝐹𝐵)𝑥} = {𝑤}))
1310, 12sbie 1814 . . . . . . . 8 ([𝑤 / 𝑦]{𝑥𝐴(𝐹𝐵)𝑥} = {𝑦} ↔ {𝑥𝐴(𝐹𝐵)𝑥} = {𝑤})
149, 13bitri 184 . . . . . . 7 (𝑤 ∈ {𝑦 ∣ {𝑥𝐴(𝐹𝐵)𝑥} = {𝑦}} ↔ {𝑥𝐴(𝐹𝐵)𝑥} = {𝑤})
1514exbii 1628 . . . . . 6 (∃𝑤 𝑤 ∈ {𝑦 ∣ {𝑥𝐴(𝐹𝐵)𝑥} = {𝑦}} ↔ ∃𝑤{𝑥𝐴(𝐹𝐵)𝑥} = {𝑤})
168, 15sylib 122 . . . . 5 (𝑧 ∈ ((𝐹𝐵)‘𝐴) → ∃𝑤{𝑥𝐴(𝐹𝐵)𝑥} = {𝑤})
17 euabsn2 3702 . . . . 5 (∃!𝑥 𝐴(𝐹𝐵)𝑥 ↔ ∃𝑤{𝑥𝐴(𝐹𝐵)𝑥} = {𝑤})
1816, 17sylibr 134 . . . 4 (𝑧 ∈ ((𝐹𝐵)‘𝐴) → ∃!𝑥 𝐴(𝐹𝐵)𝑥)
19 euex 2084 . . . 4 (∃!𝑥 𝐴(𝐹𝐵)𝑥 → ∃𝑥 𝐴(𝐹𝐵)𝑥)
20 df-br 4045 . . . . . . . 8 (𝐴(𝐹𝐵)𝑥 ↔ ⟨𝐴, 𝑥⟩ ∈ (𝐹𝐵))
21 df-res 4687 . . . . . . . . 9 (𝐹𝐵) = (𝐹 ∩ (𝐵 × V))
2221eleq2i 2272 . . . . . . . 8 (⟨𝐴, 𝑥⟩ ∈ (𝐹𝐵) ↔ ⟨𝐴, 𝑥⟩ ∈ (𝐹 ∩ (𝐵 × V)))
2320, 22bitri 184 . . . . . . 7 (𝐴(𝐹𝐵)𝑥 ↔ ⟨𝐴, 𝑥⟩ ∈ (𝐹 ∩ (𝐵 × V)))
24 elin 3356 . . . . . . . 8 (⟨𝐴, 𝑥⟩ ∈ (𝐹 ∩ (𝐵 × V)) ↔ (⟨𝐴, 𝑥⟩ ∈ 𝐹 ∧ ⟨𝐴, 𝑥⟩ ∈ (𝐵 × V)))
2524simprbi 275 . . . . . . 7 (⟨𝐴, 𝑥⟩ ∈ (𝐹 ∩ (𝐵 × V)) → ⟨𝐴, 𝑥⟩ ∈ (𝐵 × V))
2623, 25sylbi 121 . . . . . 6 (𝐴(𝐹𝐵)𝑥 → ⟨𝐴, 𝑥⟩ ∈ (𝐵 × V))
27 opelxp1 4709 . . . . . 6 (⟨𝐴, 𝑥⟩ ∈ (𝐵 × V) → 𝐴𝐵)
2826, 27syl 14 . . . . 5 (𝐴(𝐹𝐵)𝑥𝐴𝐵)
2928exlimiv 1621 . . . 4 (∃𝑥 𝐴(𝐹𝐵)𝑥𝐴𝐵)
3018, 19, 293syl 17 . . 3 (𝑧 ∈ ((𝐹𝐵)‘𝐴) → 𝐴𝐵)
3130con3i 633 . 2 𝐴𝐵 → ¬ 𝑧 ∈ ((𝐹𝐵)‘𝐴))
3231eq0rdv 3505 1 𝐴𝐵 → ((𝐹𝐵)‘𝐴) = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104   = wceq 1373  wex 1515  [wsb 1785  ∃!weu 2054  wcel 2176  {cab 2191  Vcvv 2772  cin 3165  c0 3460  {csn 3633  cop 3636   cuni 3850   class class class wbr 4044   × cxp 4673  cres 4677  cio 5230  cfv 5271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-xp 4681  df-res 4687  df-iota 5232  df-fv 5279
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator