ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfvres GIF version

Theorem nfvres 5633
Description: The value of a non-member of a restriction is the empty set. (Contributed by NM, 13-Nov-1995.)
Assertion
Ref Expression
nfvres 𝐴𝐵 → ((𝐹𝐵)‘𝐴) = ∅)

Proof of Theorem nfvres
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fv 5298 . . . . . . . . . 10 ((𝐹𝐵)‘𝐴) = (℩𝑥𝐴(𝐹𝐵)𝑥)
2 df-iota 5251 . . . . . . . . . 10 (℩𝑥𝐴(𝐹𝐵)𝑥) = {𝑦 ∣ {𝑥𝐴(𝐹𝐵)𝑥} = {𝑦}}
31, 2eqtri 2228 . . . . . . . . 9 ((𝐹𝐵)‘𝐴) = {𝑦 ∣ {𝑥𝐴(𝐹𝐵)𝑥} = {𝑦}}
43eleq2i 2274 . . . . . . . 8 (𝑧 ∈ ((𝐹𝐵)‘𝐴) ↔ 𝑧 {𝑦 ∣ {𝑥𝐴(𝐹𝐵)𝑥} = {𝑦}})
5 eluni 3867 . . . . . . . 8 (𝑧 {𝑦 ∣ {𝑥𝐴(𝐹𝐵)𝑥} = {𝑦}} ↔ ∃𝑤(𝑧𝑤𝑤 ∈ {𝑦 ∣ {𝑥𝐴(𝐹𝐵)𝑥} = {𝑦}}))
64, 5bitri 184 . . . . . . 7 (𝑧 ∈ ((𝐹𝐵)‘𝐴) ↔ ∃𝑤(𝑧𝑤𝑤 ∈ {𝑦 ∣ {𝑥𝐴(𝐹𝐵)𝑥} = {𝑦}}))
7 exsimpr 1642 . . . . . . 7 (∃𝑤(𝑧𝑤𝑤 ∈ {𝑦 ∣ {𝑥𝐴(𝐹𝐵)𝑥} = {𝑦}}) → ∃𝑤 𝑤 ∈ {𝑦 ∣ {𝑥𝐴(𝐹𝐵)𝑥} = {𝑦}})
86, 7sylbi 121 . . . . . 6 (𝑧 ∈ ((𝐹𝐵)‘𝐴) → ∃𝑤 𝑤 ∈ {𝑦 ∣ {𝑥𝐴(𝐹𝐵)𝑥} = {𝑦}})
9 df-clab 2194 . . . . . . . 8 (𝑤 ∈ {𝑦 ∣ {𝑥𝐴(𝐹𝐵)𝑥} = {𝑦}} ↔ [𝑤 / 𝑦]{𝑥𝐴(𝐹𝐵)𝑥} = {𝑦})
10 nfv 1552 . . . . . . . . 9 𝑦{𝑥𝐴(𝐹𝐵)𝑥} = {𝑤}
11 sneq 3654 . . . . . . . . . 10 (𝑦 = 𝑤 → {𝑦} = {𝑤})
1211eqeq2d 2219 . . . . . . . . 9 (𝑦 = 𝑤 → ({𝑥𝐴(𝐹𝐵)𝑥} = {𝑦} ↔ {𝑥𝐴(𝐹𝐵)𝑥} = {𝑤}))
1310, 12sbie 1815 . . . . . . . 8 ([𝑤 / 𝑦]{𝑥𝐴(𝐹𝐵)𝑥} = {𝑦} ↔ {𝑥𝐴(𝐹𝐵)𝑥} = {𝑤})
149, 13bitri 184 . . . . . . 7 (𝑤 ∈ {𝑦 ∣ {𝑥𝐴(𝐹𝐵)𝑥} = {𝑦}} ↔ {𝑥𝐴(𝐹𝐵)𝑥} = {𝑤})
1514exbii 1629 . . . . . 6 (∃𝑤 𝑤 ∈ {𝑦 ∣ {𝑥𝐴(𝐹𝐵)𝑥} = {𝑦}} ↔ ∃𝑤{𝑥𝐴(𝐹𝐵)𝑥} = {𝑤})
168, 15sylib 122 . . . . 5 (𝑧 ∈ ((𝐹𝐵)‘𝐴) → ∃𝑤{𝑥𝐴(𝐹𝐵)𝑥} = {𝑤})
17 euabsn2 3712 . . . . 5 (∃!𝑥 𝐴(𝐹𝐵)𝑥 ↔ ∃𝑤{𝑥𝐴(𝐹𝐵)𝑥} = {𝑤})
1816, 17sylibr 134 . . . 4 (𝑧 ∈ ((𝐹𝐵)‘𝐴) → ∃!𝑥 𝐴(𝐹𝐵)𝑥)
19 euex 2085 . . . 4 (∃!𝑥 𝐴(𝐹𝐵)𝑥 → ∃𝑥 𝐴(𝐹𝐵)𝑥)
20 df-br 4060 . . . . . . . 8 (𝐴(𝐹𝐵)𝑥 ↔ ⟨𝐴, 𝑥⟩ ∈ (𝐹𝐵))
21 df-res 4705 . . . . . . . . 9 (𝐹𝐵) = (𝐹 ∩ (𝐵 × V))
2221eleq2i 2274 . . . . . . . 8 (⟨𝐴, 𝑥⟩ ∈ (𝐹𝐵) ↔ ⟨𝐴, 𝑥⟩ ∈ (𝐹 ∩ (𝐵 × V)))
2320, 22bitri 184 . . . . . . 7 (𝐴(𝐹𝐵)𝑥 ↔ ⟨𝐴, 𝑥⟩ ∈ (𝐹 ∩ (𝐵 × V)))
24 elin 3364 . . . . . . . 8 (⟨𝐴, 𝑥⟩ ∈ (𝐹 ∩ (𝐵 × V)) ↔ (⟨𝐴, 𝑥⟩ ∈ 𝐹 ∧ ⟨𝐴, 𝑥⟩ ∈ (𝐵 × V)))
2524simprbi 275 . . . . . . 7 (⟨𝐴, 𝑥⟩ ∈ (𝐹 ∩ (𝐵 × V)) → ⟨𝐴, 𝑥⟩ ∈ (𝐵 × V))
2623, 25sylbi 121 . . . . . 6 (𝐴(𝐹𝐵)𝑥 → ⟨𝐴, 𝑥⟩ ∈ (𝐵 × V))
27 opelxp1 4727 . . . . . 6 (⟨𝐴, 𝑥⟩ ∈ (𝐵 × V) → 𝐴𝐵)
2826, 27syl 14 . . . . 5 (𝐴(𝐹𝐵)𝑥𝐴𝐵)
2928exlimiv 1622 . . . 4 (∃𝑥 𝐴(𝐹𝐵)𝑥𝐴𝐵)
3018, 19, 293syl 17 . . 3 (𝑧 ∈ ((𝐹𝐵)‘𝐴) → 𝐴𝐵)
3130con3i 633 . 2 𝐴𝐵 → ¬ 𝑧 ∈ ((𝐹𝐵)‘𝐴))
3231eq0rdv 3513 1 𝐴𝐵 → ((𝐹𝐵)‘𝐴) = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104   = wceq 1373  wex 1516  [wsb 1786  ∃!weu 2055  wcel 2178  {cab 2193  Vcvv 2776  cin 3173  c0 3468  {csn 3643  cop 3646   cuni 3864   class class class wbr 4059   × cxp 4691  cres 4695  cio 5249  cfv 5290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-xp 4699  df-res 4705  df-iota 5251  df-fv 5298
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator