ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfvres GIF version

Theorem nfvres 5529
Description: The value of a non-member of a restriction is the empty set. (Contributed by NM, 13-Nov-1995.)
Assertion
Ref Expression
nfvres 𝐴𝐵 → ((𝐹𝐵)‘𝐴) = ∅)

Proof of Theorem nfvres
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fv 5206 . . . . . . . . . 10 ((𝐹𝐵)‘𝐴) = (℩𝑥𝐴(𝐹𝐵)𝑥)
2 df-iota 5160 . . . . . . . . . 10 (℩𝑥𝐴(𝐹𝐵)𝑥) = {𝑦 ∣ {𝑥𝐴(𝐹𝐵)𝑥} = {𝑦}}
31, 2eqtri 2191 . . . . . . . . 9 ((𝐹𝐵)‘𝐴) = {𝑦 ∣ {𝑥𝐴(𝐹𝐵)𝑥} = {𝑦}}
43eleq2i 2237 . . . . . . . 8 (𝑧 ∈ ((𝐹𝐵)‘𝐴) ↔ 𝑧 {𝑦 ∣ {𝑥𝐴(𝐹𝐵)𝑥} = {𝑦}})
5 eluni 3799 . . . . . . . 8 (𝑧 {𝑦 ∣ {𝑥𝐴(𝐹𝐵)𝑥} = {𝑦}} ↔ ∃𝑤(𝑧𝑤𝑤 ∈ {𝑦 ∣ {𝑥𝐴(𝐹𝐵)𝑥} = {𝑦}}))
64, 5bitri 183 . . . . . . 7 (𝑧 ∈ ((𝐹𝐵)‘𝐴) ↔ ∃𝑤(𝑧𝑤𝑤 ∈ {𝑦 ∣ {𝑥𝐴(𝐹𝐵)𝑥} = {𝑦}}))
7 exsimpr 1611 . . . . . . 7 (∃𝑤(𝑧𝑤𝑤 ∈ {𝑦 ∣ {𝑥𝐴(𝐹𝐵)𝑥} = {𝑦}}) → ∃𝑤 𝑤 ∈ {𝑦 ∣ {𝑥𝐴(𝐹𝐵)𝑥} = {𝑦}})
86, 7sylbi 120 . . . . . 6 (𝑧 ∈ ((𝐹𝐵)‘𝐴) → ∃𝑤 𝑤 ∈ {𝑦 ∣ {𝑥𝐴(𝐹𝐵)𝑥} = {𝑦}})
9 df-clab 2157 . . . . . . . 8 (𝑤 ∈ {𝑦 ∣ {𝑥𝐴(𝐹𝐵)𝑥} = {𝑦}} ↔ [𝑤 / 𝑦]{𝑥𝐴(𝐹𝐵)𝑥} = {𝑦})
10 nfv 1521 . . . . . . . . 9 𝑦{𝑥𝐴(𝐹𝐵)𝑥} = {𝑤}
11 sneq 3594 . . . . . . . . . 10 (𝑦 = 𝑤 → {𝑦} = {𝑤})
1211eqeq2d 2182 . . . . . . . . 9 (𝑦 = 𝑤 → ({𝑥𝐴(𝐹𝐵)𝑥} = {𝑦} ↔ {𝑥𝐴(𝐹𝐵)𝑥} = {𝑤}))
1310, 12sbie 1784 . . . . . . . 8 ([𝑤 / 𝑦]{𝑥𝐴(𝐹𝐵)𝑥} = {𝑦} ↔ {𝑥𝐴(𝐹𝐵)𝑥} = {𝑤})
149, 13bitri 183 . . . . . . 7 (𝑤 ∈ {𝑦 ∣ {𝑥𝐴(𝐹𝐵)𝑥} = {𝑦}} ↔ {𝑥𝐴(𝐹𝐵)𝑥} = {𝑤})
1514exbii 1598 . . . . . 6 (∃𝑤 𝑤 ∈ {𝑦 ∣ {𝑥𝐴(𝐹𝐵)𝑥} = {𝑦}} ↔ ∃𝑤{𝑥𝐴(𝐹𝐵)𝑥} = {𝑤})
168, 15sylib 121 . . . . 5 (𝑧 ∈ ((𝐹𝐵)‘𝐴) → ∃𝑤{𝑥𝐴(𝐹𝐵)𝑥} = {𝑤})
17 euabsn2 3652 . . . . 5 (∃!𝑥 𝐴(𝐹𝐵)𝑥 ↔ ∃𝑤{𝑥𝐴(𝐹𝐵)𝑥} = {𝑤})
1816, 17sylibr 133 . . . 4 (𝑧 ∈ ((𝐹𝐵)‘𝐴) → ∃!𝑥 𝐴(𝐹𝐵)𝑥)
19 euex 2049 . . . 4 (∃!𝑥 𝐴(𝐹𝐵)𝑥 → ∃𝑥 𝐴(𝐹𝐵)𝑥)
20 df-br 3990 . . . . . . . 8 (𝐴(𝐹𝐵)𝑥 ↔ ⟨𝐴, 𝑥⟩ ∈ (𝐹𝐵))
21 df-res 4623 . . . . . . . . 9 (𝐹𝐵) = (𝐹 ∩ (𝐵 × V))
2221eleq2i 2237 . . . . . . . 8 (⟨𝐴, 𝑥⟩ ∈ (𝐹𝐵) ↔ ⟨𝐴, 𝑥⟩ ∈ (𝐹 ∩ (𝐵 × V)))
2320, 22bitri 183 . . . . . . 7 (𝐴(𝐹𝐵)𝑥 ↔ ⟨𝐴, 𝑥⟩ ∈ (𝐹 ∩ (𝐵 × V)))
24 elin 3310 . . . . . . . 8 (⟨𝐴, 𝑥⟩ ∈ (𝐹 ∩ (𝐵 × V)) ↔ (⟨𝐴, 𝑥⟩ ∈ 𝐹 ∧ ⟨𝐴, 𝑥⟩ ∈ (𝐵 × V)))
2524simprbi 273 . . . . . . 7 (⟨𝐴, 𝑥⟩ ∈ (𝐹 ∩ (𝐵 × V)) → ⟨𝐴, 𝑥⟩ ∈ (𝐵 × V))
2623, 25sylbi 120 . . . . . 6 (𝐴(𝐹𝐵)𝑥 → ⟨𝐴, 𝑥⟩ ∈ (𝐵 × V))
27 opelxp1 4645 . . . . . 6 (⟨𝐴, 𝑥⟩ ∈ (𝐵 × V) → 𝐴𝐵)
2826, 27syl 14 . . . . 5 (𝐴(𝐹𝐵)𝑥𝐴𝐵)
2928exlimiv 1591 . . . 4 (∃𝑥 𝐴(𝐹𝐵)𝑥𝐴𝐵)
3018, 19, 293syl 17 . . 3 (𝑧 ∈ ((𝐹𝐵)‘𝐴) → 𝐴𝐵)
3130con3i 627 . 2 𝐴𝐵 → ¬ 𝑧 ∈ ((𝐹𝐵)‘𝐴))
3231eq0rdv 3459 1 𝐴𝐵 → ((𝐹𝐵)‘𝐴) = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103   = wceq 1348  wex 1485  [wsb 1755  ∃!weu 2019  wcel 2141  {cab 2156  Vcvv 2730  cin 3120  c0 3414  {csn 3583  cop 3586   cuni 3796   class class class wbr 3989   × cxp 4609  cres 4613  cio 5158  cfv 5198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-xp 4617  df-res 4623  df-iota 5160  df-fv 5206
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator