| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > onm | GIF version | ||
| Description: The class of all ordinal numbers is inhabited. (Contributed by Jim Kingdon, 6-Mar-2019.) |
| Ref | Expression |
|---|---|
| onm | ⊢ ∃𝑥 𝑥 ∈ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0elon 4443 | . . 3 ⊢ ∅ ∈ On | |
| 2 | 0ex 4175 | . . . 4 ⊢ ∅ ∈ V | |
| 3 | eleq1 2269 | . . . 4 ⊢ (𝑥 = ∅ → (𝑥 ∈ On ↔ ∅ ∈ On)) | |
| 4 | 2, 3 | ceqsexv 2812 | . . 3 ⊢ (∃𝑥(𝑥 = ∅ ∧ 𝑥 ∈ On) ↔ ∅ ∈ On) |
| 5 | 1, 4 | mpbir 146 | . 2 ⊢ ∃𝑥(𝑥 = ∅ ∧ 𝑥 ∈ On) |
| 6 | exsimpr 1642 | . 2 ⊢ (∃𝑥(𝑥 = ∅ ∧ 𝑥 ∈ On) → ∃𝑥 𝑥 ∈ On) | |
| 7 | 5, 6 | ax-mp 5 | 1 ⊢ ∃𝑥 𝑥 ∈ On |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1373 ∃wex 1516 ∈ wcel 2177 ∅c0 3461 Oncon0 4414 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-nul 4174 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-dif 3169 df-in 3173 df-ss 3180 df-nul 3462 df-pw 3619 df-uni 3853 df-tr 4147 df-iord 4417 df-on 4419 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |