ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onm GIF version

Theorem onm 4379
Description: The class of all ordinal numbers is inhabited. (Contributed by Jim Kingdon, 6-Mar-2019.)
Assertion
Ref Expression
onm 𝑥 𝑥 ∈ On

Proof of Theorem onm
StepHypRef Expression
1 0elon 4370 . . 3 ∅ ∈ On
2 0ex 4109 . . . 4 ∅ ∈ V
3 eleq1 2229 . . . 4 (𝑥 = ∅ → (𝑥 ∈ On ↔ ∅ ∈ On))
42, 3ceqsexv 2765 . . 3 (∃𝑥(𝑥 = ∅ ∧ 𝑥 ∈ On) ↔ ∅ ∈ On)
51, 4mpbir 145 . 2 𝑥(𝑥 = ∅ ∧ 𝑥 ∈ On)
6 exsimpr 1606 . 2 (∃𝑥(𝑥 = ∅ ∧ 𝑥 ∈ On) → ∃𝑥 𝑥 ∈ On)
75, 6ax-mp 5 1 𝑥 𝑥 ∈ On
Colors of variables: wff set class
Syntax hints:  wa 103   = wceq 1343  wex 1480  wcel 2136  c0 3409  Oncon0 4341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-nul 4108
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-dif 3118  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-uni 3790  df-tr 4081  df-iord 4344  df-on 4346
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator