| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > onm | GIF version | ||
| Description: The class of all ordinal numbers is inhabited. (Contributed by Jim Kingdon, 6-Mar-2019.) |
| Ref | Expression |
|---|---|
| onm | ⊢ ∃𝑥 𝑥 ∈ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0elon 4460 | . . 3 ⊢ ∅ ∈ On | |
| 2 | 0ex 4190 | . . . 4 ⊢ ∅ ∈ V | |
| 3 | eleq1 2272 | . . . 4 ⊢ (𝑥 = ∅ → (𝑥 ∈ On ↔ ∅ ∈ On)) | |
| 4 | 2, 3 | ceqsexv 2819 | . . 3 ⊢ (∃𝑥(𝑥 = ∅ ∧ 𝑥 ∈ On) ↔ ∅ ∈ On) |
| 5 | 1, 4 | mpbir 146 | . 2 ⊢ ∃𝑥(𝑥 = ∅ ∧ 𝑥 ∈ On) |
| 6 | exsimpr 1644 | . 2 ⊢ (∃𝑥(𝑥 = ∅ ∧ 𝑥 ∈ On) → ∃𝑥 𝑥 ∈ On) | |
| 7 | 5, 6 | ax-mp 5 | 1 ⊢ ∃𝑥 𝑥 ∈ On |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1375 ∃wex 1518 ∈ wcel 2180 ∅c0 3471 Oncon0 4431 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 ax-nul 4189 |
| This theorem depends on definitions: df-bi 117 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-v 2781 df-dif 3179 df-in 3183 df-ss 3190 df-nul 3472 df-pw 3631 df-uni 3868 df-tr 4162 df-iord 4434 df-on 4436 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |