ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onm GIF version

Theorem onm 4452
Description: The class of all ordinal numbers is inhabited. (Contributed by Jim Kingdon, 6-Mar-2019.)
Assertion
Ref Expression
onm 𝑥 𝑥 ∈ On

Proof of Theorem onm
StepHypRef Expression
1 0elon 4443 . . 3 ∅ ∈ On
2 0ex 4175 . . . 4 ∅ ∈ V
3 eleq1 2269 . . . 4 (𝑥 = ∅ → (𝑥 ∈ On ↔ ∅ ∈ On))
42, 3ceqsexv 2812 . . 3 (∃𝑥(𝑥 = ∅ ∧ 𝑥 ∈ On) ↔ ∅ ∈ On)
51, 4mpbir 146 . 2 𝑥(𝑥 = ∅ ∧ 𝑥 ∈ On)
6 exsimpr 1642 . 2 (∃𝑥(𝑥 = ∅ ∧ 𝑥 ∈ On) → ∃𝑥 𝑥 ∈ On)
75, 6ax-mp 5 1 𝑥 𝑥 ∈ On
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1373  wex 1516  wcel 2177  c0 3461  Oncon0 4414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188  ax-nul 4174
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-dif 3169  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-uni 3853  df-tr 4147  df-iord 4417  df-on 4419
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator