![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > onm | GIF version |
Description: The class of all ordinal numbers is inhabited. (Contributed by Jim Kingdon, 6-Mar-2019.) |
Ref | Expression |
---|---|
onm | ⊢ ∃𝑥 𝑥 ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0elon 4423 | . . 3 ⊢ ∅ ∈ On | |
2 | 0ex 4156 | . . . 4 ⊢ ∅ ∈ V | |
3 | eleq1 2256 | . . . 4 ⊢ (𝑥 = ∅ → (𝑥 ∈ On ↔ ∅ ∈ On)) | |
4 | 2, 3 | ceqsexv 2799 | . . 3 ⊢ (∃𝑥(𝑥 = ∅ ∧ 𝑥 ∈ On) ↔ ∅ ∈ On) |
5 | 1, 4 | mpbir 146 | . 2 ⊢ ∃𝑥(𝑥 = ∅ ∧ 𝑥 ∈ On) |
6 | exsimpr 1629 | . 2 ⊢ (∃𝑥(𝑥 = ∅ ∧ 𝑥 ∈ On) → ∃𝑥 𝑥 ∈ On) | |
7 | 5, 6 | ax-mp 5 | 1 ⊢ ∃𝑥 𝑥 ∈ On |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1364 ∃wex 1503 ∈ wcel 2164 ∅c0 3446 Oncon0 4394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-nul 4155 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-dif 3155 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-uni 3836 df-tr 4128 df-iord 4397 df-on 4399 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |