| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > onm | GIF version | ||
| Description: The class of all ordinal numbers is inhabited. (Contributed by Jim Kingdon, 6-Mar-2019.) |
| Ref | Expression |
|---|---|
| onm | ⊢ ∃𝑥 𝑥 ∈ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0elon 4428 | . . 3 ⊢ ∅ ∈ On | |
| 2 | 0ex 4161 | . . . 4 ⊢ ∅ ∈ V | |
| 3 | eleq1 2259 | . . . 4 ⊢ (𝑥 = ∅ → (𝑥 ∈ On ↔ ∅ ∈ On)) | |
| 4 | 2, 3 | ceqsexv 2802 | . . 3 ⊢ (∃𝑥(𝑥 = ∅ ∧ 𝑥 ∈ On) ↔ ∅ ∈ On) |
| 5 | 1, 4 | mpbir 146 | . 2 ⊢ ∃𝑥(𝑥 = ∅ ∧ 𝑥 ∈ On) |
| 6 | exsimpr 1632 | . 2 ⊢ (∃𝑥(𝑥 = ∅ ∧ 𝑥 ∈ On) → ∃𝑥 𝑥 ∈ On) | |
| 7 | 5, 6 | ax-mp 5 | 1 ⊢ ∃𝑥 𝑥 ∈ On |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1364 ∃wex 1506 ∈ wcel 2167 ∅c0 3451 Oncon0 4399 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-nul 4160 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-uni 3841 df-tr 4133 df-iord 4402 df-on 4404 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |