ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onm GIF version

Theorem onm 4436
Description: The class of all ordinal numbers is inhabited. (Contributed by Jim Kingdon, 6-Mar-2019.)
Assertion
Ref Expression
onm 𝑥 𝑥 ∈ On

Proof of Theorem onm
StepHypRef Expression
1 0elon 4427 . . 3 ∅ ∈ On
2 0ex 4160 . . . 4 ∅ ∈ V
3 eleq1 2259 . . . 4 (𝑥 = ∅ → (𝑥 ∈ On ↔ ∅ ∈ On))
42, 3ceqsexv 2802 . . 3 (∃𝑥(𝑥 = ∅ ∧ 𝑥 ∈ On) ↔ ∅ ∈ On)
51, 4mpbir 146 . 2 𝑥(𝑥 = ∅ ∧ 𝑥 ∈ On)
6 exsimpr 1632 . 2 (∃𝑥(𝑥 = ∅ ∧ 𝑥 ∈ On) → ∃𝑥 𝑥 ∈ On)
75, 6ax-mp 5 1 𝑥 𝑥 ∈ On
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1364  wex 1506  wcel 2167  c0 3450  Oncon0 4398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-nul 4159
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-uni 3840  df-tr 4132  df-iord 4401  df-on 4403
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator