ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onm GIF version

Theorem onm 4469
Description: The class of all ordinal numbers is inhabited. (Contributed by Jim Kingdon, 6-Mar-2019.)
Assertion
Ref Expression
onm 𝑥 𝑥 ∈ On

Proof of Theorem onm
StepHypRef Expression
1 0elon 4460 . . 3 ∅ ∈ On
2 0ex 4190 . . . 4 ∅ ∈ V
3 eleq1 2272 . . . 4 (𝑥 = ∅ → (𝑥 ∈ On ↔ ∅ ∈ On))
42, 3ceqsexv 2819 . . 3 (∃𝑥(𝑥 = ∅ ∧ 𝑥 ∈ On) ↔ ∅ ∈ On)
51, 4mpbir 146 . 2 𝑥(𝑥 = ∅ ∧ 𝑥 ∈ On)
6 exsimpr 1644 . 2 (∃𝑥(𝑥 = ∅ ∧ 𝑥 ∈ On) → ∃𝑥 𝑥 ∈ On)
75, 6ax-mp 5 1 𝑥 𝑥 ∈ On
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1375  wex 1518  wcel 2180  c0 3471  Oncon0 4431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191  ax-nul 4189
This theorem depends on definitions:  df-bi 117  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-v 2781  df-dif 3179  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-uni 3868  df-tr 4162  df-iord 4434  df-on 4436
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator