![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > onm | GIF version |
Description: The class of all ordinal numbers is inhabited. (Contributed by Jim Kingdon, 6-Mar-2019.) |
Ref | Expression |
---|---|
onm | ⊢ ∃𝑥 𝑥 ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0elon 4230 | . . 3 ⊢ ∅ ∈ On | |
2 | 0ex 3974 | . . . 4 ⊢ ∅ ∈ V | |
3 | eleq1 2151 | . . . 4 ⊢ (𝑥 = ∅ → (𝑥 ∈ On ↔ ∅ ∈ On)) | |
4 | 2, 3 | ceqsexv 2661 | . . 3 ⊢ (∃𝑥(𝑥 = ∅ ∧ 𝑥 ∈ On) ↔ ∅ ∈ On) |
5 | 1, 4 | mpbir 145 | . 2 ⊢ ∃𝑥(𝑥 = ∅ ∧ 𝑥 ∈ On) |
6 | exsimpr 1555 | . 2 ⊢ (∃𝑥(𝑥 = ∅ ∧ 𝑥 ∈ On) → ∃𝑥 𝑥 ∈ On) | |
7 | 5, 6 | ax-mp 7 | 1 ⊢ ∃𝑥 𝑥 ∈ On |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 = wceq 1290 ∃wex 1427 ∈ wcel 1439 ∅c0 3289 Oncon0 4201 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 580 ax-in2 581 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-nul 3973 |
This theorem depends on definitions: df-bi 116 df-tru 1293 df-nf 1396 df-sb 1694 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ral 2365 df-rex 2366 df-v 2624 df-dif 3004 df-in 3008 df-ss 3015 df-nul 3290 df-pw 3437 df-uni 3662 df-tr 3945 df-iord 4204 df-on 4206 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |