Proof of Theorem 2sb5rf
Step | Hyp | Ref
| Expression |
1 | | 2sb5rf.1 |
. . 3
⊢ (𝜑 → ∀𝑧𝜑) |
2 | 1 | sb5rf 1840 |
. 2
⊢ (𝜑 ↔ ∃𝑧(𝑧 = 𝑥 ∧ [𝑧 / 𝑥]𝜑)) |
3 | | 19.42v 1894 |
. . . 4
⊢
(∃𝑤(𝑧 = 𝑥 ∧ (𝑤 = 𝑦 ∧ [𝑤 / 𝑦][𝑧 / 𝑥]𝜑)) ↔ (𝑧 = 𝑥 ∧ ∃𝑤(𝑤 = 𝑦 ∧ [𝑤 / 𝑦][𝑧 / 𝑥]𝜑))) |
4 | | sbcom2 1975 |
. . . . . . 7
⊢ ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 ↔ [𝑤 / 𝑦][𝑧 / 𝑥]𝜑) |
5 | 4 | anbi2i 453 |
. . . . . 6
⊢ (((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) ∧ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑) ↔ ((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) ∧ [𝑤 / 𝑦][𝑧 / 𝑥]𝜑)) |
6 | | anass 399 |
. . . . . 6
⊢ (((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) ∧ [𝑤 / 𝑦][𝑧 / 𝑥]𝜑) ↔ (𝑧 = 𝑥 ∧ (𝑤 = 𝑦 ∧ [𝑤 / 𝑦][𝑧 / 𝑥]𝜑))) |
7 | 5, 6 | bitri 183 |
. . . . 5
⊢ (((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) ∧ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑) ↔ (𝑧 = 𝑥 ∧ (𝑤 = 𝑦 ∧ [𝑤 / 𝑦][𝑧 / 𝑥]𝜑))) |
8 | 7 | exbii 1593 |
. . . 4
⊢
(∃𝑤((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) ∧ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑) ↔ ∃𝑤(𝑧 = 𝑥 ∧ (𝑤 = 𝑦 ∧ [𝑤 / 𝑦][𝑧 / 𝑥]𝜑))) |
9 | | 2sb5rf.2 |
. . . . . . 7
⊢ (𝜑 → ∀𝑤𝜑) |
10 | 9 | hbsbv 1929 |
. . . . . 6
⊢ ([𝑧 / 𝑥]𝜑 → ∀𝑤[𝑧 / 𝑥]𝜑) |
11 | 10 | sb5rf 1840 |
. . . . 5
⊢ ([𝑧 / 𝑥]𝜑 ↔ ∃𝑤(𝑤 = 𝑦 ∧ [𝑤 / 𝑦][𝑧 / 𝑥]𝜑)) |
12 | 11 | anbi2i 453 |
. . . 4
⊢ ((𝑧 = 𝑥 ∧ [𝑧 / 𝑥]𝜑) ↔ (𝑧 = 𝑥 ∧ ∃𝑤(𝑤 = 𝑦 ∧ [𝑤 / 𝑦][𝑧 / 𝑥]𝜑))) |
13 | 3, 8, 12 | 3bitr4ri 212 |
. . 3
⊢ ((𝑧 = 𝑥 ∧ [𝑧 / 𝑥]𝜑) ↔ ∃𝑤((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) ∧ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑)) |
14 | 13 | exbii 1593 |
. 2
⊢
(∃𝑧(𝑧 = 𝑥 ∧ [𝑧 / 𝑥]𝜑) ↔ ∃𝑧∃𝑤((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) ∧ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑)) |
15 | 2, 14 | bitri 183 |
1
⊢ (𝜑 ↔ ∃𝑧∃𝑤((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) ∧ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑)) |