ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbhb GIF version

Theorem sbhb 1928
Description: Two ways of expressing "𝑥 is (effectively) not free in 𝜑." (Contributed by NM, 29-May-2009.)
Assertion
Ref Expression
sbhb ((𝜑 → ∀𝑥𝜑) ↔ ∀𝑦(𝜑 → [𝑦 / 𝑥]𝜑))
Distinct variable group:   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem sbhb
StepHypRef Expression
1 ax-17 1514 . . . 4 (𝜑 → ∀𝑦𝜑)
21sb8h 1842 . . 3 (∀𝑥𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑)
32imbi2i 225 . 2 ((𝜑 → ∀𝑥𝜑) ↔ (𝜑 → ∀𝑦[𝑦 / 𝑥]𝜑))
4 19.21v 1861 . 2 (∀𝑦(𝜑 → [𝑦 / 𝑥]𝜑) ↔ (𝜑 → ∀𝑦[𝑦 / 𝑥]𝜑))
53, 4bitr4i 186 1 ((𝜑 → ∀𝑥𝜑) ↔ ∀𝑦(𝜑 → [𝑦 / 𝑥]𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wal 1341  [wsb 1750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751
This theorem is referenced by:  sbnf2  1969
  Copyright terms: Public domain W3C validator