| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbhb | GIF version | ||
| Description: Two ways of expressing "𝑥 is (effectively) not free in 𝜑." (Contributed by NM, 29-May-2009.) |
| Ref | Expression |
|---|---|
| sbhb | ⊢ ((𝜑 → ∀𝑥𝜑) ↔ ∀𝑦(𝜑 → [𝑦 / 𝑥]𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-17 1572 | . . . 4 ⊢ (𝜑 → ∀𝑦𝜑) | |
| 2 | 1 | sb8h 1900 | . . 3 ⊢ (∀𝑥𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑) |
| 3 | 2 | imbi2i 226 | . 2 ⊢ ((𝜑 → ∀𝑥𝜑) ↔ (𝜑 → ∀𝑦[𝑦 / 𝑥]𝜑)) |
| 4 | 19.21v 1919 | . 2 ⊢ (∀𝑦(𝜑 → [𝑦 / 𝑥]𝜑) ↔ (𝜑 → ∀𝑦[𝑦 / 𝑥]𝜑)) | |
| 5 | 3, 4 | bitr4i 187 | 1 ⊢ ((𝜑 → ∀𝑥𝜑) ↔ ∀𝑦(𝜑 → [𝑦 / 𝑥]𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1393 [wsb 1808 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 |
| This theorem is referenced by: sbnf2 2032 |
| Copyright terms: Public domain | W3C validator |