ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsdivcl GIF version

Theorem dvdsdivcl 11584
Description: The complement of a divisor of 𝑁 is also a divisor of 𝑁. (Contributed by Mario Carneiro, 2-Jul-2015.) (Proof shortened by AV, 9-Aug-2021.)
Assertion
Ref Expression
dvdsdivcl ((𝑁 ∈ ℕ ∧ 𝐴 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (𝑁 / 𝐴) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
Distinct variable groups:   𝑥,𝐴   𝑥,𝑁

Proof of Theorem dvdsdivcl
StepHypRef Expression
1 breq1 3940 . . . . 5 (𝑥 = 𝐴 → (𝑥𝑁𝐴𝑁))
21elrab 2844 . . . 4 (𝐴 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ↔ (𝐴 ∈ ℕ ∧ 𝐴𝑁))
3 nndivdvds 11535 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (𝐴𝑁 ↔ (𝑁 / 𝐴) ∈ ℕ))
43biimpd 143 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (𝐴𝑁 → (𝑁 / 𝐴) ∈ ℕ))
54expcom 115 . . . . . . 7 (𝐴 ∈ ℕ → (𝑁 ∈ ℕ → (𝐴𝑁 → (𝑁 / 𝐴) ∈ ℕ)))
65com23 78 . . . . . 6 (𝐴 ∈ ℕ → (𝐴𝑁 → (𝑁 ∈ ℕ → (𝑁 / 𝐴) ∈ ℕ)))
76imp 123 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐴𝑁) → (𝑁 ∈ ℕ → (𝑁 / 𝐴) ∈ ℕ))
8 nnne0 8772 . . . . . . . 8 (𝐴 ∈ ℕ → 𝐴 ≠ 0)
98anim1i 338 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐴𝑁) → (𝐴 ≠ 0 ∧ 𝐴𝑁))
109ancomd 265 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐴𝑁) → (𝐴𝑁𝐴 ≠ 0))
11 divconjdvds 11583 . . . . . 6 ((𝐴𝑁𝐴 ≠ 0) → (𝑁 / 𝐴) ∥ 𝑁)
1210, 11syl 14 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐴𝑁) → (𝑁 / 𝐴) ∥ 𝑁)
137, 12jctird 315 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐴𝑁) → (𝑁 ∈ ℕ → ((𝑁 / 𝐴) ∈ ℕ ∧ (𝑁 / 𝐴) ∥ 𝑁)))
142, 13sylbi 120 . . 3 (𝐴 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} → (𝑁 ∈ ℕ → ((𝑁 / 𝐴) ∈ ℕ ∧ (𝑁 / 𝐴) ∥ 𝑁)))
1514impcom 124 . 2 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → ((𝑁 / 𝐴) ∈ ℕ ∧ (𝑁 / 𝐴) ∥ 𝑁))
16 breq1 3940 . . 3 (𝑥 = (𝑁 / 𝐴) → (𝑥𝑁 ↔ (𝑁 / 𝐴) ∥ 𝑁))
1716elrab 2844 . 2 ((𝑁 / 𝐴) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ↔ ((𝑁 / 𝐴) ∈ ℕ ∧ (𝑁 / 𝐴) ∥ 𝑁))
1815, 17sylibr 133 1 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (𝑁 / 𝐴) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wcel 1481  wne 2309  {crab 2421   class class class wbr 3937  (class class class)co 5782  0cc0 7644   / cdiv 8456  cn 8744  cdvds 11529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-br 3938  df-opab 3998  df-id 4223  df-po 4226  df-iso 4227  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-iota 5096  df-fun 5133  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-n0 9002  df-z 9079  df-dvds 11530
This theorem is referenced by:  dvdsflip  11585
  Copyright terms: Public domain W3C validator