Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dvdsdivcl | GIF version |
Description: The complement of a divisor of 𝑁 is also a divisor of 𝑁. (Contributed by Mario Carneiro, 2-Jul-2015.) (Proof shortened by AV, 9-Aug-2021.) |
Ref | Expression |
---|---|
dvdsdivcl | ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → (𝑁 / 𝐴) ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 3985 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∥ 𝑁 ↔ 𝐴 ∥ 𝑁)) | |
2 | 1 | elrab 2882 | . . . 4 ⊢ (𝐴 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ↔ (𝐴 ∈ ℕ ∧ 𝐴 ∥ 𝑁)) |
3 | nndivdvds 11736 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (𝐴 ∥ 𝑁 ↔ (𝑁 / 𝐴) ∈ ℕ)) | |
4 | 3 | biimpd 143 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (𝐴 ∥ 𝑁 → (𝑁 / 𝐴) ∈ ℕ)) |
5 | 4 | expcom 115 | . . . . . . 7 ⊢ (𝐴 ∈ ℕ → (𝑁 ∈ ℕ → (𝐴 ∥ 𝑁 → (𝑁 / 𝐴) ∈ ℕ))) |
6 | 5 | com23 78 | . . . . . 6 ⊢ (𝐴 ∈ ℕ → (𝐴 ∥ 𝑁 → (𝑁 ∈ ℕ → (𝑁 / 𝐴) ∈ ℕ))) |
7 | 6 | imp 123 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ 𝐴 ∥ 𝑁) → (𝑁 ∈ ℕ → (𝑁 / 𝐴) ∈ ℕ)) |
8 | nnne0 8885 | . . . . . . . 8 ⊢ (𝐴 ∈ ℕ → 𝐴 ≠ 0) | |
9 | 8 | anim1i 338 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ ∧ 𝐴 ∥ 𝑁) → (𝐴 ≠ 0 ∧ 𝐴 ∥ 𝑁)) |
10 | 9 | ancomd 265 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ 𝐴 ∥ 𝑁) → (𝐴 ∥ 𝑁 ∧ 𝐴 ≠ 0)) |
11 | divconjdvds 11787 | . . . . . 6 ⊢ ((𝐴 ∥ 𝑁 ∧ 𝐴 ≠ 0) → (𝑁 / 𝐴) ∥ 𝑁) | |
12 | 10, 11 | syl 14 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ 𝐴 ∥ 𝑁) → (𝑁 / 𝐴) ∥ 𝑁) |
13 | 7, 12 | jctird 315 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝐴 ∥ 𝑁) → (𝑁 ∈ ℕ → ((𝑁 / 𝐴) ∈ ℕ ∧ (𝑁 / 𝐴) ∥ 𝑁))) |
14 | 2, 13 | sylbi 120 | . . 3 ⊢ (𝐴 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} → (𝑁 ∈ ℕ → ((𝑁 / 𝐴) ∈ ℕ ∧ (𝑁 / 𝐴) ∥ 𝑁))) |
15 | 14 | impcom 124 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → ((𝑁 / 𝐴) ∈ ℕ ∧ (𝑁 / 𝐴) ∥ 𝑁)) |
16 | breq1 3985 | . . 3 ⊢ (𝑥 = (𝑁 / 𝐴) → (𝑥 ∥ 𝑁 ↔ (𝑁 / 𝐴) ∥ 𝑁)) | |
17 | 16 | elrab 2882 | . 2 ⊢ ((𝑁 / 𝐴) ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ↔ ((𝑁 / 𝐴) ∈ ℕ ∧ (𝑁 / 𝐴) ∥ 𝑁)) |
18 | 15, 17 | sylibr 133 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → (𝑁 / 𝐴) ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2136 ≠ wne 2336 {crab 2448 class class class wbr 3982 (class class class)co 5842 0cc0 7753 / cdiv 8568 ℕcn 8857 ∥ cdvds 11727 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-id 4271 df-po 4274 df-iso 4275 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-n0 9115 df-z 9192 df-dvds 11728 |
This theorem is referenced by: dvdsflip 11789 |
Copyright terms: Public domain | W3C validator |