![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dvdsdivcl | GIF version |
Description: The complement of a divisor of 𝑁 is also a divisor of 𝑁. (Contributed by Mario Carneiro, 2-Jul-2015.) (Proof shortened by AV, 9-Aug-2021.) |
Ref | Expression |
---|---|
dvdsdivcl | ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → (𝑁 / 𝐴) ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 3870 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∥ 𝑁 ↔ 𝐴 ∥ 𝑁)) | |
2 | 1 | elrab 2785 | . . . 4 ⊢ (𝐴 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ↔ (𝐴 ∈ ℕ ∧ 𝐴 ∥ 𝑁)) |
3 | nndivdvds 11244 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (𝐴 ∥ 𝑁 ↔ (𝑁 / 𝐴) ∈ ℕ)) | |
4 | 3 | biimpd 143 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (𝐴 ∥ 𝑁 → (𝑁 / 𝐴) ∈ ℕ)) |
5 | 4 | expcom 115 | . . . . . . 7 ⊢ (𝐴 ∈ ℕ → (𝑁 ∈ ℕ → (𝐴 ∥ 𝑁 → (𝑁 / 𝐴) ∈ ℕ))) |
6 | 5 | com23 78 | . . . . . 6 ⊢ (𝐴 ∈ ℕ → (𝐴 ∥ 𝑁 → (𝑁 ∈ ℕ → (𝑁 / 𝐴) ∈ ℕ))) |
7 | 6 | imp 123 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ 𝐴 ∥ 𝑁) → (𝑁 ∈ ℕ → (𝑁 / 𝐴) ∈ ℕ)) |
8 | nnne0 8548 | . . . . . . . 8 ⊢ (𝐴 ∈ ℕ → 𝐴 ≠ 0) | |
9 | 8 | anim1i 334 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ ∧ 𝐴 ∥ 𝑁) → (𝐴 ≠ 0 ∧ 𝐴 ∥ 𝑁)) |
10 | 9 | ancomd 264 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ 𝐴 ∥ 𝑁) → (𝐴 ∥ 𝑁 ∧ 𝐴 ≠ 0)) |
11 | divconjdvds 11292 | . . . . . 6 ⊢ ((𝐴 ∥ 𝑁 ∧ 𝐴 ≠ 0) → (𝑁 / 𝐴) ∥ 𝑁) | |
12 | 10, 11 | syl 14 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ 𝐴 ∥ 𝑁) → (𝑁 / 𝐴) ∥ 𝑁) |
13 | 7, 12 | jctird 311 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝐴 ∥ 𝑁) → (𝑁 ∈ ℕ → ((𝑁 / 𝐴) ∈ ℕ ∧ (𝑁 / 𝐴) ∥ 𝑁))) |
14 | 2, 13 | sylbi 120 | . . 3 ⊢ (𝐴 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} → (𝑁 ∈ ℕ → ((𝑁 / 𝐴) ∈ ℕ ∧ (𝑁 / 𝐴) ∥ 𝑁))) |
15 | 14 | impcom 124 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → ((𝑁 / 𝐴) ∈ ℕ ∧ (𝑁 / 𝐴) ∥ 𝑁)) |
16 | breq1 3870 | . . 3 ⊢ (𝑥 = (𝑁 / 𝐴) → (𝑥 ∥ 𝑁 ↔ (𝑁 / 𝐴) ∥ 𝑁)) | |
17 | 16 | elrab 2785 | . 2 ⊢ ((𝑁 / 𝐴) ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ↔ ((𝑁 / 𝐴) ∈ ℕ ∧ (𝑁 / 𝐴) ∥ 𝑁)) |
18 | 15, 17 | sylibr 133 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → (𝑁 / 𝐴) ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 1445 ≠ wne 2262 {crab 2374 class class class wbr 3867 (class class class)co 5690 0cc0 7447 / cdiv 8236 ℕcn 8520 ∥ cdvds 11238 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 582 ax-in2 583 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-13 1456 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-sep 3978 ax-pow 4030 ax-pr 4060 ax-un 4284 ax-setind 4381 ax-cnex 7533 ax-resscn 7534 ax-1cn 7535 ax-1re 7536 ax-icn 7537 ax-addcl 7538 ax-addrcl 7539 ax-mulcl 7540 ax-mulrcl 7541 ax-addcom 7542 ax-mulcom 7543 ax-addass 7544 ax-mulass 7545 ax-distr 7546 ax-i2m1 7547 ax-0lt1 7548 ax-1rid 7549 ax-0id 7550 ax-rnegex 7551 ax-precex 7552 ax-cnre 7553 ax-pre-ltirr 7554 ax-pre-ltwlin 7555 ax-pre-lttrn 7556 ax-pre-apti 7557 ax-pre-ltadd 7558 ax-pre-mulgt0 7559 ax-pre-mulext 7560 |
This theorem depends on definitions: df-bi 116 df-3or 928 df-3an 929 df-tru 1299 df-fal 1302 df-nf 1402 df-sb 1700 df-eu 1958 df-mo 1959 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ne 2263 df-nel 2358 df-ral 2375 df-rex 2376 df-reu 2377 df-rmo 2378 df-rab 2379 df-v 2635 df-sbc 2855 df-dif 3015 df-un 3017 df-in 3019 df-ss 3026 df-pw 3451 df-sn 3472 df-pr 3473 df-op 3475 df-uni 3676 df-int 3711 df-br 3868 df-opab 3922 df-id 4144 df-po 4147 df-iso 4148 df-xp 4473 df-rel 4474 df-cnv 4475 df-co 4476 df-dm 4477 df-iota 5014 df-fun 5051 df-fv 5057 df-riota 5646 df-ov 5693 df-oprab 5694 df-mpt2 5695 df-pnf 7621 df-mnf 7622 df-xr 7623 df-ltxr 7624 df-le 7625 df-sub 7752 df-neg 7753 df-reap 8149 df-ap 8156 df-div 8237 df-inn 8521 df-n0 8772 df-z 8849 df-dvds 11239 |
This theorem is referenced by: dvdsflip 11294 |
Copyright terms: Public domain | W3C validator |