ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsdivcl GIF version

Theorem dvdsdivcl 11858
Description: The complement of a divisor of 𝑁 is also a divisor of 𝑁. (Contributed by Mario Carneiro, 2-Jul-2015.) (Proof shortened by AV, 9-Aug-2021.)
Assertion
Ref Expression
dvdsdivcl ((𝑁 ∈ ℕ ∧ 𝐴 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (𝑁 / 𝐴) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
Distinct variable groups:   𝑥,𝐴   𝑥,𝑁

Proof of Theorem dvdsdivcl
StepHypRef Expression
1 breq1 4008 . . . . 5 (𝑥 = 𝐴 → (𝑥𝑁𝐴𝑁))
21elrab 2895 . . . 4 (𝐴 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ↔ (𝐴 ∈ ℕ ∧ 𝐴𝑁))
3 nndivdvds 11805 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (𝐴𝑁 ↔ (𝑁 / 𝐴) ∈ ℕ))
43biimpd 144 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (𝐴𝑁 → (𝑁 / 𝐴) ∈ ℕ))
54expcom 116 . . . . . . 7 (𝐴 ∈ ℕ → (𝑁 ∈ ℕ → (𝐴𝑁 → (𝑁 / 𝐴) ∈ ℕ)))
65com23 78 . . . . . 6 (𝐴 ∈ ℕ → (𝐴𝑁 → (𝑁 ∈ ℕ → (𝑁 / 𝐴) ∈ ℕ)))
76imp 124 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐴𝑁) → (𝑁 ∈ ℕ → (𝑁 / 𝐴) ∈ ℕ))
8 nnne0 8949 . . . . . . . 8 (𝐴 ∈ ℕ → 𝐴 ≠ 0)
98anim1i 340 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐴𝑁) → (𝐴 ≠ 0 ∧ 𝐴𝑁))
109ancomd 267 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐴𝑁) → (𝐴𝑁𝐴 ≠ 0))
11 divconjdvds 11857 . . . . . 6 ((𝐴𝑁𝐴 ≠ 0) → (𝑁 / 𝐴) ∥ 𝑁)
1210, 11syl 14 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐴𝑁) → (𝑁 / 𝐴) ∥ 𝑁)
137, 12jctird 317 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐴𝑁) → (𝑁 ∈ ℕ → ((𝑁 / 𝐴) ∈ ℕ ∧ (𝑁 / 𝐴) ∥ 𝑁)))
142, 13sylbi 121 . . 3 (𝐴 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} → (𝑁 ∈ ℕ → ((𝑁 / 𝐴) ∈ ℕ ∧ (𝑁 / 𝐴) ∥ 𝑁)))
1514impcom 125 . 2 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → ((𝑁 / 𝐴) ∈ ℕ ∧ (𝑁 / 𝐴) ∥ 𝑁))
16 breq1 4008 . . 3 (𝑥 = (𝑁 / 𝐴) → (𝑥𝑁 ↔ (𝑁 / 𝐴) ∥ 𝑁))
1716elrab 2895 . 2 ((𝑁 / 𝐴) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ↔ ((𝑁 / 𝐴) ∈ ℕ ∧ (𝑁 / 𝐴) ∥ 𝑁))
1815, 17sylibr 134 1 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (𝑁 / 𝐴) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2148  wne 2347  {crab 2459   class class class wbr 4005  (class class class)co 5877  0cc0 7813   / cdiv 8631  cn 8921  cdvds 11796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-id 4295  df-po 4298  df-iso 4299  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-n0 9179  df-z 9256  df-dvds 11797
This theorem is referenced by:  dvdsflip  11859
  Copyright terms: Public domain W3C validator