ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cauappcvgprlemladdrl GIF version

Theorem cauappcvgprlemladdrl 7119
Description: Lemma for cauappcvgprlemladd 7120. The forward subset relationship for the lower cut. (Contributed by Jim Kingdon, 11-Jul-2020.)
Hypotheses
Ref Expression
cauappcvgpr.f (𝜑𝐹:QQ)
cauappcvgpr.app (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))
cauappcvgpr.bnd (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))
cauappcvgpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩
cauappcvgprlemladd.s (𝜑𝑆Q)
Assertion
Ref Expression
cauappcvgprlemladdrl (𝜑 → (1st ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)}, {𝑢Q ∣ ∃𝑞Q (((𝐹𝑞) +Q 𝑞) +Q 𝑆) <Q 𝑢}⟩) ⊆ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩)))
Distinct variable groups:   𝐴,𝑝   𝐿,𝑝,𝑞   𝜑,𝑝,𝑞   𝐹,𝑙,𝑢,𝑝,𝑞   𝑆,𝑙,𝑞,𝑢,𝑝
Allowed substitution hints:   𝜑(𝑢,𝑙)   𝐴(𝑢,𝑞,𝑙)   𝐿(𝑢,𝑙)

Proof of Theorem cauappcvgprlemladdrl
Dummy variables 𝑓 𝑔 𝑟 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 5598 . . . . . 6 (𝑙 = 𝑟 → (𝑙 +Q 𝑞) = (𝑟 +Q 𝑞))
21breq1d 3821 . . . . 5 (𝑙 = 𝑟 → ((𝑙 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆) ↔ (𝑟 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)))
32rexbidv 2375 . . . 4 (𝑙 = 𝑟 → (∃𝑞Q (𝑙 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆) ↔ ∃𝑞Q (𝑟 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)))
4 nqex 6825 . . . . . 6 Q ∈ V
54rabex 3948 . . . . 5 {𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)} ∈ V
64rabex 3948 . . . . 5 {𝑢Q ∣ ∃𝑞Q (((𝐹𝑞) +Q 𝑞) +Q 𝑆) <Q 𝑢} ∈ V
75, 6op1st 5852 . . . 4 (1st ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)}, {𝑢Q ∣ ∃𝑞Q (((𝐹𝑞) +Q 𝑞) +Q 𝑆) <Q 𝑢}⟩) = {𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)}
83, 7elrab2 2762 . . 3 (𝑟 ∈ (1st ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)}, {𝑢Q ∣ ∃𝑞Q (((𝐹𝑞) +Q 𝑞) +Q 𝑆) <Q 𝑢}⟩) ↔ (𝑟Q ∧ ∃𝑞Q (𝑟 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)))
9 cauappcvgpr.f . . . . . . . . . . . . . . . 16 (𝜑𝐹:QQ)
109ad3antrrr 476 . . . . . . . . . . . . . . 15 ((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑟 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)) → 𝐹:QQ)
1110ffvelrnda 5379 . . . . . . . . . . . . . 14 (((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑟 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)) ∧ 𝑏Q) → (𝐹𝑏) ∈ Q)
12 simplr 497 . . . . . . . . . . . . . . 15 ((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑟 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)) → 𝑞Q)
13 addclnq 6837 . . . . . . . . . . . . . . 15 ((𝑞Q𝑏Q) → (𝑞 +Q 𝑏) ∈ Q)
1412, 13sylan 277 . . . . . . . . . . . . . 14 (((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑟 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)) ∧ 𝑏Q) → (𝑞 +Q 𝑏) ∈ Q)
15 addclnq 6837 . . . . . . . . . . . . . 14 (((𝐹𝑏) ∈ Q ∧ (𝑞 +Q 𝑏) ∈ Q) → ((𝐹𝑏) +Q (𝑞 +Q 𝑏)) ∈ Q)
1611, 14, 15syl2anc 403 . . . . . . . . . . . . 13 (((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑟 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)) ∧ 𝑏Q) → ((𝐹𝑏) +Q (𝑞 +Q 𝑏)) ∈ Q)
1710adantr 270 . . . . . . . . . . . . . 14 (((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑟 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)) ∧ 𝑏Q) → 𝐹:QQ)
18 simpllr 501 . . . . . . . . . . . . . 14 (((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑟 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)) ∧ 𝑏Q) → 𝑞Q)
1917, 18ffvelrnd 5380 . . . . . . . . . . . . 13 (((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑟 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)) ∧ 𝑏Q) → (𝐹𝑞) ∈ Q)
20 ltsonq 6860 . . . . . . . . . . . . . 14 <Q Or Q
21 so2nr 4112 . . . . . . . . . . . . . 14 (( <Q Or Q ∧ (((𝐹𝑏) +Q (𝑞 +Q 𝑏)) ∈ Q ∧ (𝐹𝑞) ∈ Q)) → ¬ (((𝐹𝑏) +Q (𝑞 +Q 𝑏)) <Q (𝐹𝑞) ∧ (𝐹𝑞) <Q ((𝐹𝑏) +Q (𝑞 +Q 𝑏))))
2220, 21mpan 415 . . . . . . . . . . . . 13 ((((𝐹𝑏) +Q (𝑞 +Q 𝑏)) ∈ Q ∧ (𝐹𝑞) ∈ Q) → ¬ (((𝐹𝑏) +Q (𝑞 +Q 𝑏)) <Q (𝐹𝑞) ∧ (𝐹𝑞) <Q ((𝐹𝑏) +Q (𝑞 +Q 𝑏))))
2316, 19, 22syl2anc 403 . . . . . . . . . . . 12 (((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑟 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)) ∧ 𝑏Q) → ¬ (((𝐹𝑏) +Q (𝑞 +Q 𝑏)) <Q (𝐹𝑞) ∧ (𝐹𝑞) <Q ((𝐹𝑏) +Q (𝑞 +Q 𝑏))))
24 addclnq 6837 . . . . . . . . . . . . . . . . . . 19 (((𝐹𝑏) ∈ Q𝑏Q) → ((𝐹𝑏) +Q 𝑏) ∈ Q)
2511, 24sylancom 411 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑟 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)) ∧ 𝑏Q) → ((𝐹𝑏) +Q 𝑏) ∈ Q)
26 cauappcvgprlemladd.s . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑆Q)
2726ad3antrrr 476 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑟 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)) → 𝑆Q)
2827adantr 270 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑟 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)) ∧ 𝑏Q) → 𝑆Q)
29 addassnqg 6844 . . . . . . . . . . . . . . . . . 18 ((((𝐹𝑏) +Q 𝑏) ∈ Q𝑞Q𝑆Q) → ((((𝐹𝑏) +Q 𝑏) +Q 𝑞) +Q 𝑆) = (((𝐹𝑏) +Q 𝑏) +Q (𝑞 +Q 𝑆)))
3025, 18, 28, 29syl3anc 1170 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑟 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)) ∧ 𝑏Q) → ((((𝐹𝑏) +Q 𝑏) +Q 𝑞) +Q 𝑆) = (((𝐹𝑏) +Q 𝑏) +Q (𝑞 +Q 𝑆)))
3130breq1d 3821 . . . . . . . . . . . . . . . 16 (((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑟 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)) ∧ 𝑏Q) → (((((𝐹𝑏) +Q 𝑏) +Q 𝑞) +Q 𝑆) <Q ((𝐹𝑞) +Q 𝑆) ↔ (((𝐹𝑏) +Q 𝑏) +Q (𝑞 +Q 𝑆)) <Q ((𝐹𝑞) +Q 𝑆)))
32 ltanqg 6862 . . . . . . . . . . . . . . . . . 18 ((𝑓Q𝑔QQ) → (𝑓 <Q 𝑔 ↔ ( +Q 𝑓) <Q ( +Q 𝑔)))
3332adantl 271 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑟 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)) ∧ 𝑏Q) ∧ (𝑓Q𝑔QQ)) → (𝑓 <Q 𝑔 ↔ ( +Q 𝑓) <Q ( +Q 𝑔)))
34 addclnq 6837 . . . . . . . . . . . . . . . . . 18 ((((𝐹𝑏) +Q 𝑏) ∈ Q𝑞Q) → (((𝐹𝑏) +Q 𝑏) +Q 𝑞) ∈ Q)
3525, 18, 34syl2anc 403 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑟 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)) ∧ 𝑏Q) → (((𝐹𝑏) +Q 𝑏) +Q 𝑞) ∈ Q)
36 addcomnqg 6843 . . . . . . . . . . . . . . . . . 18 ((𝑓Q𝑔Q) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
3736adantl 271 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑟 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)) ∧ 𝑏Q) ∧ (𝑓Q𝑔Q)) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
3833, 35, 19, 28, 37caovord2d 5749 . . . . . . . . . . . . . . . 16 (((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑟 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)) ∧ 𝑏Q) → ((((𝐹𝑏) +Q 𝑏) +Q 𝑞) <Q (𝐹𝑞) ↔ ((((𝐹𝑏) +Q 𝑏) +Q 𝑞) +Q 𝑆) <Q ((𝐹𝑞) +Q 𝑆)))
39 addcomnqg 6843 . . . . . . . . . . . . . . . . . . 19 ((𝑆Q𝑞Q) → (𝑆 +Q 𝑞) = (𝑞 +Q 𝑆))
4028, 18, 39syl2anc 403 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑟 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)) ∧ 𝑏Q) → (𝑆 +Q 𝑞) = (𝑞 +Q 𝑆))
4140oveq2d 5607 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑟 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)) ∧ 𝑏Q) → (((𝐹𝑏) +Q 𝑏) +Q (𝑆 +Q 𝑞)) = (((𝐹𝑏) +Q 𝑏) +Q (𝑞 +Q 𝑆)))
4241breq1d 3821 . . . . . . . . . . . . . . . 16 (((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑟 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)) ∧ 𝑏Q) → ((((𝐹𝑏) +Q 𝑏) +Q (𝑆 +Q 𝑞)) <Q ((𝐹𝑞) +Q 𝑆) ↔ (((𝐹𝑏) +Q 𝑏) +Q (𝑞 +Q 𝑆)) <Q ((𝐹𝑞) +Q 𝑆)))
4331, 38, 423bitr4rd 219 . . . . . . . . . . . . . . 15 (((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑟 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)) ∧ 𝑏Q) → ((((𝐹𝑏) +Q 𝑏) +Q (𝑆 +Q 𝑞)) <Q ((𝐹𝑞) +Q 𝑆) ↔ (((𝐹𝑏) +Q 𝑏) +Q 𝑞) <Q (𝐹𝑞)))
44 simpr 108 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑟 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)) ∧ 𝑏Q) → 𝑏Q)
45 addassnqg 6844 . . . . . . . . . . . . . . . . . 18 (((𝐹𝑏) ∈ Q𝑏Q𝑞Q) → (((𝐹𝑏) +Q 𝑏) +Q 𝑞) = ((𝐹𝑏) +Q (𝑏 +Q 𝑞)))
4611, 44, 18, 45syl3anc 1170 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑟 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)) ∧ 𝑏Q) → (((𝐹𝑏) +Q 𝑏) +Q 𝑞) = ((𝐹𝑏) +Q (𝑏 +Q 𝑞)))
47 addcomnqg 6843 . . . . . . . . . . . . . . . . . . 19 ((𝑏Q𝑞Q) → (𝑏 +Q 𝑞) = (𝑞 +Q 𝑏))
4844, 18, 47syl2anc 403 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑟 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)) ∧ 𝑏Q) → (𝑏 +Q 𝑞) = (𝑞 +Q 𝑏))
4948oveq2d 5607 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑟 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)) ∧ 𝑏Q) → ((𝐹𝑏) +Q (𝑏 +Q 𝑞)) = ((𝐹𝑏) +Q (𝑞 +Q 𝑏)))
5046, 49eqtrd 2115 . . . . . . . . . . . . . . . 16 (((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑟 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)) ∧ 𝑏Q) → (((𝐹𝑏) +Q 𝑏) +Q 𝑞) = ((𝐹𝑏) +Q (𝑞 +Q 𝑏)))
5150breq1d 3821 . . . . . . . . . . . . . . 15 (((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑟 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)) ∧ 𝑏Q) → ((((𝐹𝑏) +Q 𝑏) +Q 𝑞) <Q (𝐹𝑞) ↔ ((𝐹𝑏) +Q (𝑞 +Q 𝑏)) <Q (𝐹𝑞)))
5243, 51bitrd 186 . . . . . . . . . . . . . 14 (((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑟 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)) ∧ 𝑏Q) → ((((𝐹𝑏) +Q 𝑏) +Q (𝑆 +Q 𝑞)) <Q ((𝐹𝑞) +Q 𝑆) ↔ ((𝐹𝑏) +Q (𝑞 +Q 𝑏)) <Q (𝐹𝑞)))
5352biimpd 142 . . . . . . . . . . . . 13 (((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑟 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)) ∧ 𝑏Q) → ((((𝐹𝑏) +Q 𝑏) +Q (𝑆 +Q 𝑞)) <Q ((𝐹𝑞) +Q 𝑆) → ((𝐹𝑏) +Q (𝑞 +Q 𝑏)) <Q (𝐹𝑞)))
54 cauappcvgpr.app . . . . . . . . . . . . . . . . . 18 (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))
5554ad3antrrr 476 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑟 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)) → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))
56 fveq2 5253 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 = 𝑏 → (𝐹𝑝) = (𝐹𝑏))
57 oveq1 5598 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 = 𝑏 → (𝑝 +Q 𝑞) = (𝑏 +Q 𝑞))
5857oveq2d 5607 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 = 𝑏 → ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) = ((𝐹𝑞) +Q (𝑏 +Q 𝑞)))
5956, 58breq12d 3824 . . . . . . . . . . . . . . . . . . . 20 (𝑝 = 𝑏 → ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ↔ (𝐹𝑏) <Q ((𝐹𝑞) +Q (𝑏 +Q 𝑞))))
6056, 57oveq12d 5609 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 = 𝑏 → ((𝐹𝑝) +Q (𝑝 +Q 𝑞)) = ((𝐹𝑏) +Q (𝑏 +Q 𝑞)))
6160breq2d 3823 . . . . . . . . . . . . . . . . . . . 20 (𝑝 = 𝑏 → ((𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞)) ↔ (𝐹𝑞) <Q ((𝐹𝑏) +Q (𝑏 +Q 𝑞))))
6259, 61anbi12d 457 . . . . . . . . . . . . . . . . . . 19 (𝑝 = 𝑏 → (((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))) ↔ ((𝐹𝑏) <Q ((𝐹𝑞) +Q (𝑏 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑏) +Q (𝑏 +Q 𝑞)))))
6362ralbidv 2374 . . . . . . . . . . . . . . . . . 18 (𝑝 = 𝑏 → (∀𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))) ↔ ∀𝑞Q ((𝐹𝑏) <Q ((𝐹𝑞) +Q (𝑏 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑏) +Q (𝑏 +Q 𝑞)))))
6463rspcv 2708 . . . . . . . . . . . . . . . . 17 (𝑏Q → (∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))) → ∀𝑞Q ((𝐹𝑏) <Q ((𝐹𝑞) +Q (𝑏 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑏) +Q (𝑏 +Q 𝑞)))))
6555, 64mpan9 275 . . . . . . . . . . . . . . . 16 (((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑟 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)) ∧ 𝑏Q) → ∀𝑞Q ((𝐹𝑏) <Q ((𝐹𝑞) +Q (𝑏 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑏) +Q (𝑏 +Q 𝑞))))
66 rsp 2417 . . . . . . . . . . . . . . . 16 (∀𝑞Q ((𝐹𝑏) <Q ((𝐹𝑞) +Q (𝑏 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑏) +Q (𝑏 +Q 𝑞))) → (𝑞Q → ((𝐹𝑏) <Q ((𝐹𝑞) +Q (𝑏 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑏) +Q (𝑏 +Q 𝑞)))))
6765, 18, 66sylc 61 . . . . . . . . . . . . . . 15 (((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑟 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)) ∧ 𝑏Q) → ((𝐹𝑏) <Q ((𝐹𝑞) +Q (𝑏 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑏) +Q (𝑏 +Q 𝑞))))
6867simprd 112 . . . . . . . . . . . . . 14 (((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑟 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)) ∧ 𝑏Q) → (𝐹𝑞) <Q ((𝐹𝑏) +Q (𝑏 +Q 𝑞)))
6968, 49breqtrd 3835 . . . . . . . . . . . . 13 (((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑟 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)) ∧ 𝑏Q) → (𝐹𝑞) <Q ((𝐹𝑏) +Q (𝑞 +Q 𝑏)))
7053, 69jctird 310 . . . . . . . . . . . 12 (((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑟 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)) ∧ 𝑏Q) → ((((𝐹𝑏) +Q 𝑏) +Q (𝑆 +Q 𝑞)) <Q ((𝐹𝑞) +Q 𝑆) → (((𝐹𝑏) +Q (𝑞 +Q 𝑏)) <Q (𝐹𝑞) ∧ (𝐹𝑞) <Q ((𝐹𝑏) +Q (𝑞 +Q 𝑏)))))
7123, 70mtod 622 . . . . . . . . . . 11 (((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑟 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)) ∧ 𝑏Q) → ¬ (((𝐹𝑏) +Q 𝑏) +Q (𝑆 +Q 𝑞)) <Q ((𝐹𝑞) +Q 𝑆))
7271nrexdv 2460 . . . . . . . . . 10 ((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑟 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)) → ¬ ∃𝑏Q (((𝐹𝑏) +Q 𝑏) +Q (𝑆 +Q 𝑞)) <Q ((𝐹𝑞) +Q 𝑆))
7372intnand 874 . . . . . . . . 9 ((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑟 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)) → ¬ (((𝐹𝑞) +Q 𝑆) ∈ Q ∧ ∃𝑏Q (((𝐹𝑏) +Q 𝑏) +Q (𝑆 +Q 𝑞)) <Q ((𝐹𝑞) +Q 𝑆)))
74 fveq2 5253 . . . . . . . . . . . . . . . . . 18 (𝑏 = 𝑞 → (𝐹𝑏) = (𝐹𝑞))
75 oveq2 5599 . . . . . . . . . . . . . . . . . 18 (𝑏 = 𝑞 → (𝑝 +Q 𝑏) = (𝑝 +Q 𝑞))
7674, 75oveq12d 5609 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝑞 → ((𝐹𝑏) +Q (𝑝 +Q 𝑏)) = ((𝐹𝑞) +Q (𝑝 +Q 𝑞)))
7776breq2d 3823 . . . . . . . . . . . . . . . 16 (𝑏 = 𝑞 → ((𝐹𝑝) <Q ((𝐹𝑏) +Q (𝑝 +Q 𝑏)) ↔ (𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞))))
7875oveq2d 5607 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝑞 → ((𝐹𝑝) +Q (𝑝 +Q 𝑏)) = ((𝐹𝑝) +Q (𝑝 +Q 𝑞)))
7974, 78breq12d 3824 . . . . . . . . . . . . . . . 16 (𝑏 = 𝑞 → ((𝐹𝑏) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑏)) ↔ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))
8077, 79anbi12d 457 . . . . . . . . . . . . . . 15 (𝑏 = 𝑞 → (((𝐹𝑝) <Q ((𝐹𝑏) +Q (𝑝 +Q 𝑏)) ∧ (𝐹𝑏) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑏))) ↔ ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞)))))
8180cbvralv 2583 . . . . . . . . . . . . . 14 (∀𝑏Q ((𝐹𝑝) <Q ((𝐹𝑏) +Q (𝑝 +Q 𝑏)) ∧ (𝐹𝑏) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑏))) ↔ ∀𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))
8281ralbii 2378 . . . . . . . . . . . . 13 (∀𝑝Q𝑏Q ((𝐹𝑝) <Q ((𝐹𝑏) +Q (𝑝 +Q 𝑏)) ∧ (𝐹𝑏) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑏))) ↔ ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))
8355, 82sylibr 132 . . . . . . . . . . . 12 ((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑟 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)) → ∀𝑝Q𝑏Q ((𝐹𝑝) <Q ((𝐹𝑏) +Q (𝑝 +Q 𝑏)) ∧ (𝐹𝑏) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑏))))
84 cauappcvgpr.bnd . . . . . . . . . . . . 13 (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))
8584ad3antrrr 476 . . . . . . . . . . . 12 ((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑟 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)) → ∀𝑝Q 𝐴 <Q (𝐹𝑝))
86 cauappcvgpr.lim . . . . . . . . . . . . 13 𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩
87 oveq2 5599 . . . . . . . . . . . . . . . . . 18 (𝑞 = 𝑏 → (𝑙 +Q 𝑞) = (𝑙 +Q 𝑏))
88 fveq2 5253 . . . . . . . . . . . . . . . . . 18 (𝑞 = 𝑏 → (𝐹𝑞) = (𝐹𝑏))
8987, 88breq12d 3824 . . . . . . . . . . . . . . . . 17 (𝑞 = 𝑏 → ((𝑙 +Q 𝑞) <Q (𝐹𝑞) ↔ (𝑙 +Q 𝑏) <Q (𝐹𝑏)))
9089cbvrexv 2584 . . . . . . . . . . . . . . . 16 (∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞) ↔ ∃𝑏Q (𝑙 +Q 𝑏) <Q (𝐹𝑏))
9190a1i 9 . . . . . . . . . . . . . . 15 (𝑙Q → (∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞) ↔ ∃𝑏Q (𝑙 +Q 𝑏) <Q (𝐹𝑏)))
9291rabbiia 2597 . . . . . . . . . . . . . 14 {𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)} = {𝑙Q ∣ ∃𝑏Q (𝑙 +Q 𝑏) <Q (𝐹𝑏)}
93 id 19 . . . . . . . . . . . . . . . . . . 19 (𝑞 = 𝑏𝑞 = 𝑏)
9488, 93oveq12d 5609 . . . . . . . . . . . . . . . . . 18 (𝑞 = 𝑏 → ((𝐹𝑞) +Q 𝑞) = ((𝐹𝑏) +Q 𝑏))
9594breq1d 3821 . . . . . . . . . . . . . . . . 17 (𝑞 = 𝑏 → (((𝐹𝑞) +Q 𝑞) <Q 𝑢 ↔ ((𝐹𝑏) +Q 𝑏) <Q 𝑢))
9695cbvrexv 2584 . . . . . . . . . . . . . . . 16 (∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢 ↔ ∃𝑏Q ((𝐹𝑏) +Q 𝑏) <Q 𝑢)
9796a1i 9 . . . . . . . . . . . . . . 15 (𝑢Q → (∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢 ↔ ∃𝑏Q ((𝐹𝑏) +Q 𝑏) <Q 𝑢))
9897rabbiia 2597 . . . . . . . . . . . . . 14 {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢} = {𝑢Q ∣ ∃𝑏Q ((𝐹𝑏) +Q 𝑏) <Q 𝑢}
9992, 98opeq12i 3601 . . . . . . . . . . . . 13 ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩ = ⟨{𝑙Q ∣ ∃𝑏Q (𝑙 +Q 𝑏) <Q (𝐹𝑏)}, {𝑢Q ∣ ∃𝑏Q ((𝐹𝑏) +Q 𝑏) <Q 𝑢}⟩
10086, 99eqtri 2103 . . . . . . . . . . . 12 𝐿 = ⟨{𝑙Q ∣ ∃𝑏Q (𝑙 +Q 𝑏) <Q (𝐹𝑏)}, {𝑢Q ∣ ∃𝑏Q ((𝐹𝑏) +Q 𝑏) <Q 𝑢}⟩
101 addclnq 6837 . . . . . . . . . . . . 13 ((𝑆Q𝑞Q) → (𝑆 +Q 𝑞) ∈ Q)
10227, 12, 101syl2anc 403 . . . . . . . . . . . 12 ((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑟 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)) → (𝑆 +Q 𝑞) ∈ Q)
10310, 83, 85, 100, 102cauappcvgprlemladdfu 7116 . . . . . . . . . . 11 ((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑟 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)) → (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑞)}, {𝑢 ∣ (𝑆 +Q 𝑞) <Q 𝑢}⟩)) ⊆ (2nd ‘⟨{𝑙Q ∣ ∃𝑏Q (𝑙 +Q 𝑏) <Q ((𝐹𝑏) +Q (𝑆 +Q 𝑞))}, {𝑢Q ∣ ∃𝑏Q (((𝐹𝑏) +Q 𝑏) +Q (𝑆 +Q 𝑞)) <Q 𝑢}⟩))
104103sseld 3009 . . . . . . . . . 10 ((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑟 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)) → (((𝐹𝑞) +Q 𝑆) ∈ (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑞)}, {𝑢 ∣ (𝑆 +Q 𝑞) <Q 𝑢}⟩)) → ((𝐹𝑞) +Q 𝑆) ∈ (2nd ‘⟨{𝑙Q ∣ ∃𝑏Q (𝑙 +Q 𝑏) <Q ((𝐹𝑏) +Q (𝑆 +Q 𝑞))}, {𝑢Q ∣ ∃𝑏Q (((𝐹𝑏) +Q 𝑏) +Q (𝑆 +Q 𝑞)) <Q 𝑢}⟩)))
105 breq2 3815 . . . . . . . . . . . 12 (𝑢 = ((𝐹𝑞) +Q 𝑆) → ((((𝐹𝑏) +Q 𝑏) +Q (𝑆 +Q 𝑞)) <Q 𝑢 ↔ (((𝐹𝑏) +Q 𝑏) +Q (𝑆 +Q 𝑞)) <Q ((𝐹𝑞) +Q 𝑆)))
106105rexbidv 2375 . . . . . . . . . . 11 (𝑢 = ((𝐹𝑞) +Q 𝑆) → (∃𝑏Q (((𝐹𝑏) +Q 𝑏) +Q (𝑆 +Q 𝑞)) <Q 𝑢 ↔ ∃𝑏Q (((𝐹𝑏) +Q 𝑏) +Q (𝑆 +Q 𝑞)) <Q ((𝐹𝑞) +Q 𝑆)))
1074rabex 3948 . . . . . . . . . . . 12 {𝑙Q ∣ ∃𝑏Q (𝑙 +Q 𝑏) <Q ((𝐹𝑏) +Q (𝑆 +Q 𝑞))} ∈ V
1084rabex 3948 . . . . . . . . . . . 12 {𝑢Q ∣ ∃𝑏Q (((𝐹𝑏) +Q 𝑏) +Q (𝑆 +Q 𝑞)) <Q 𝑢} ∈ V
109107, 108op2nd 5853 . . . . . . . . . . 11 (2nd ‘⟨{𝑙Q ∣ ∃𝑏Q (𝑙 +Q 𝑏) <Q ((𝐹𝑏) +Q (𝑆 +Q 𝑞))}, {𝑢Q ∣ ∃𝑏Q (((𝐹𝑏) +Q 𝑏) +Q (𝑆 +Q 𝑞)) <Q 𝑢}⟩) = {𝑢Q ∣ ∃𝑏Q (((𝐹𝑏) +Q 𝑏) +Q (𝑆 +Q 𝑞)) <Q 𝑢}
110106, 109elrab2 2762 . . . . . . . . . 10 (((𝐹𝑞) +Q 𝑆) ∈ (2nd ‘⟨{𝑙Q ∣ ∃𝑏Q (𝑙 +Q 𝑏) <Q ((𝐹𝑏) +Q (𝑆 +Q 𝑞))}, {𝑢Q ∣ ∃𝑏Q (((𝐹𝑏) +Q 𝑏) +Q (𝑆 +Q 𝑞)) <Q 𝑢}⟩) ↔ (((𝐹𝑞) +Q 𝑆) ∈ Q ∧ ∃𝑏Q (((𝐹𝑏) +Q 𝑏) +Q (𝑆 +Q 𝑞)) <Q ((𝐹𝑞) +Q 𝑆)))
111104, 110syl6ib 159 . . . . . . . . 9 ((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑟 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)) → (((𝐹𝑞) +Q 𝑆) ∈ (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑞)}, {𝑢 ∣ (𝑆 +Q 𝑞) <Q 𝑢}⟩)) → (((𝐹𝑞) +Q 𝑆) ∈ Q ∧ ∃𝑏Q (((𝐹𝑏) +Q 𝑏) +Q (𝑆 +Q 𝑞)) <Q ((𝐹𝑞) +Q 𝑆))))
11273, 111mtod 622 . . . . . . . 8 ((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑟 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)) → ¬ ((𝐹𝑞) +Q 𝑆) ∈ (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑞)}, {𝑢 ∣ (𝑆 +Q 𝑞) <Q 𝑢}⟩)))
1139, 54, 84, 86cauappcvgprlemcl 7115 . . . . . . . . . . 11 (𝜑𝐿P)
114113ad3antrrr 476 . . . . . . . . . 10 ((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑟 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)) → 𝐿P)
115 nqprlu 7009 . . . . . . . . . . 11 ((𝑆 +Q 𝑞) ∈ Q → ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑞)}, {𝑢 ∣ (𝑆 +Q 𝑞) <Q 𝑢}⟩ ∈ P)
116102, 115syl 14 . . . . . . . . . 10 ((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑟 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)) → ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑞)}, {𝑢 ∣ (𝑆 +Q 𝑞) <Q 𝑢}⟩ ∈ P)
117 addclpr 6999 . . . . . . . . . 10 ((𝐿P ∧ ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑞)}, {𝑢 ∣ (𝑆 +Q 𝑞) <Q 𝑢}⟩ ∈ P) → (𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑞)}, {𝑢 ∣ (𝑆 +Q 𝑞) <Q 𝑢}⟩) ∈ P)
118114, 116, 117syl2anc 403 . . . . . . . . 9 ((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑟 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)) → (𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑞)}, {𝑢 ∣ (𝑆 +Q 𝑞) <Q 𝑢}⟩) ∈ P)
119 prop 6937 . . . . . . . . . 10 ((𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑞)}, {𝑢 ∣ (𝑆 +Q 𝑞) <Q 𝑢}⟩) ∈ P → ⟨(1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑞)}, {𝑢 ∣ (𝑆 +Q 𝑞) <Q 𝑢}⟩)), (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑞)}, {𝑢 ∣ (𝑆 +Q 𝑞) <Q 𝑢}⟩))⟩ ∈ P)
120 prloc 6953 . . . . . . . . . 10 ((⟨(1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑞)}, {𝑢 ∣ (𝑆 +Q 𝑞) <Q 𝑢}⟩)), (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑞)}, {𝑢 ∣ (𝑆 +Q 𝑞) <Q 𝑢}⟩))⟩ ∈ P ∧ (𝑟 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)) → ((𝑟 +Q 𝑞) ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑞)}, {𝑢 ∣ (𝑆 +Q 𝑞) <Q 𝑢}⟩)) ∨ ((𝐹𝑞) +Q 𝑆) ∈ (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑞)}, {𝑢 ∣ (𝑆 +Q 𝑞) <Q 𝑢}⟩))))
121119, 120sylan 277 . . . . . . . . 9 (((𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑞)}, {𝑢 ∣ (𝑆 +Q 𝑞) <Q 𝑢}⟩) ∈ P ∧ (𝑟 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)) → ((𝑟 +Q 𝑞) ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑞)}, {𝑢 ∣ (𝑆 +Q 𝑞) <Q 𝑢}⟩)) ∨ ((𝐹𝑞) +Q 𝑆) ∈ (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑞)}, {𝑢 ∣ (𝑆 +Q 𝑞) <Q 𝑢}⟩))))
122118, 121sylancom 411 . . . . . . . 8 ((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑟 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)) → ((𝑟 +Q 𝑞) ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑞)}, {𝑢 ∣ (𝑆 +Q 𝑞) <Q 𝑢}⟩)) ∨ ((𝐹𝑞) +Q 𝑆) ∈ (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑞)}, {𝑢 ∣ (𝑆 +Q 𝑞) <Q 𝑢}⟩))))
123112, 122ecased 1281 . . . . . . 7 ((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑟 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)) → (𝑟 +Q 𝑞) ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑞)}, {𝑢 ∣ (𝑆 +Q 𝑞) <Q 𝑢}⟩)))
124 simpllr 501 . . . . . . . 8 ((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑟 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)) → 𝑟Q)
125114, 27, 124, 12caucvgprlemcanl 7106 . . . . . . 7 ((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑟 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)) → ((𝑟 +Q 𝑞) ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑞)}, {𝑢 ∣ (𝑆 +Q 𝑞) <Q 𝑢}⟩)) ↔ 𝑟 ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))))
126123, 125mpbid 145 . . . . . 6 ((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (𝑟 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)) → 𝑟 ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩)))
127126ex 113 . . . . 5 (((𝜑𝑟Q) ∧ 𝑞Q) → ((𝑟 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆) → 𝑟 ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))))
128127rexlimdva 2483 . . . 4 ((𝜑𝑟Q) → (∃𝑞Q (𝑟 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆) → 𝑟 ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))))
129128expimpd 355 . . 3 (𝜑 → ((𝑟Q ∧ ∃𝑞Q (𝑟 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)) → 𝑟 ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))))
1308, 129syl5bi 150 . 2 (𝜑 → (𝑟 ∈ (1st ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)}, {𝑢Q ∣ ∃𝑞Q (((𝐹𝑞) +Q 𝑞) +Q 𝑆) <Q 𝑢}⟩) → 𝑟 ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))))
131130ssrdv 3016 1 (𝜑 → (1st ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)}, {𝑢Q ∣ ∃𝑞Q (((𝐹𝑞) +Q 𝑞) +Q 𝑆) <Q 𝑢}⟩) ⊆ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103  wo 662  w3a 920   = wceq 1285  wcel 1434  {cab 2069  wral 2353  wrex 2354  {crab 2357  wss 2984  cop 3425   class class class wbr 3811   Or wor 4086  wf 4965  cfv 4969  (class class class)co 5591  1st c1st 5844  2nd c2nd 5845  Qcnq 6742   +Q cplq 6744   <Q cltq 6747  Pcnp 6753   +P cpp 6755
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3919  ax-sep 3922  ax-nul 3930  ax-pow 3974  ax-pr 4000  ax-un 4224  ax-setind 4316  ax-iinf 4366
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2614  df-sbc 2827  df-csb 2920  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-nul 3270  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-int 3663  df-iun 3706  df-br 3812  df-opab 3866  df-mpt 3867  df-tr 3902  df-eprel 4080  df-id 4084  df-po 4087  df-iso 4088  df-iord 4157  df-on 4159  df-suc 4162  df-iom 4369  df-xp 4407  df-rel 4408  df-cnv 4409  df-co 4410  df-dm 4411  df-rn 4412  df-res 4413  df-ima 4414  df-iota 4934  df-fun 4971  df-fn 4972  df-f 4973  df-f1 4974  df-fo 4975  df-f1o 4976  df-fv 4977  df-ov 5594  df-oprab 5595  df-mpt2 5596  df-1st 5846  df-2nd 5847  df-recs 6002  df-irdg 6067  df-1o 6113  df-2o 6114  df-oadd 6117  df-omul 6118  df-er 6222  df-ec 6224  df-qs 6228  df-ni 6766  df-pli 6767  df-mi 6768  df-lti 6769  df-plpq 6806  df-mpq 6807  df-enq 6809  df-nqqs 6810  df-plqqs 6811  df-mqqs 6812  df-1nqqs 6813  df-rq 6814  df-ltnqqs 6815  df-enq0 6886  df-nq0 6887  df-0nq0 6888  df-plq0 6889  df-mq0 6890  df-inp 6928  df-iplp 6930  df-iltp 6932
This theorem is referenced by:  cauappcvgprlemladd  7120
  Copyright terms: Public domain W3C validator