Step | Hyp | Ref
| Expression |
1 | | simpll 524 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) → 𝐽 ∈ (TopOn‘𝑋)) |
2 | | toptopon2 12732 |
. . . . . 6
⊢ (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘∪ 𝐾)) |
3 | 2 | biimpi 119 |
. . . . 5
⊢ (𝐾 ∈ Top → 𝐾 ∈ (TopOn‘∪ 𝐾)) |
4 | 3 | ad2antlr 486 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) → 𝐾 ∈ (TopOn‘∪ 𝐾)) |
5 | | simpr3 1000 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) |
6 | | cnpf2 12922 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘∪ 𝐾)
∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹:𝑋⟶∪ 𝐾) |
7 | 1, 4, 5, 6 | syl3anc 1233 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) → 𝐹:𝑋⟶∪ 𝐾) |
8 | | simpr1 998 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) → 𝐴 ⊆ 𝑋) |
9 | 7, 8 | fssresd 5372 |
. 2
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) → (𝐹 ↾ 𝐴):𝐴⟶∪ 𝐾) |
10 | | simplr2 1035 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) ∧ 𝑦 ∈ 𝐾) → 𝑃 ∈ 𝐴) |
11 | | fvres 5518 |
. . . . . 6
⊢ (𝑃 ∈ 𝐴 → ((𝐹 ↾ 𝐴)‘𝑃) = (𝐹‘𝑃)) |
12 | 10, 11 | syl 14 |
. . . . 5
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) ∧ 𝑦 ∈ 𝐾) → ((𝐹 ↾ 𝐴)‘𝑃) = (𝐹‘𝑃)) |
13 | 12 | eleq1d 2239 |
. . . 4
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) ∧ 𝑦 ∈ 𝐾) → (((𝐹 ↾ 𝐴)‘𝑃) ∈ 𝑦 ↔ (𝐹‘𝑃) ∈ 𝑦)) |
14 | 1 | ad2antrr 485 |
. . . . . . 7
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) ∧ 𝑦 ∈ 𝐾) ∧ (𝐹‘𝑃) ∈ 𝑦) → 𝐽 ∈ (TopOn‘𝑋)) |
15 | 4 | ad2antrr 485 |
. . . . . . 7
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) ∧ 𝑦 ∈ 𝐾) ∧ (𝐹‘𝑃) ∈ 𝑦) → 𝐾 ∈ (TopOn‘∪ 𝐾)) |
16 | 8 | ad2antrr 485 |
. . . . . . . 8
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) ∧ 𝑦 ∈ 𝐾) ∧ (𝐹‘𝑃) ∈ 𝑦) → 𝐴 ⊆ 𝑋) |
17 | | simpr2 999 |
. . . . . . . . 9
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) → 𝑃 ∈ 𝐴) |
18 | 17 | ad2antrr 485 |
. . . . . . . 8
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) ∧ 𝑦 ∈ 𝐾) ∧ (𝐹‘𝑃) ∈ 𝑦) → 𝑃 ∈ 𝐴) |
19 | 16, 18 | sseldd 3148 |
. . . . . . 7
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) ∧ 𝑦 ∈ 𝐾) ∧ (𝐹‘𝑃) ∈ 𝑦) → 𝑃 ∈ 𝑋) |
20 | 5 | ad2antrr 485 |
. . . . . . 7
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) ∧ 𝑦 ∈ 𝐾) ∧ (𝐹‘𝑃) ∈ 𝑦) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) |
21 | | simplr 525 |
. . . . . . 7
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) ∧ 𝑦 ∈ 𝐾) ∧ (𝐹‘𝑃) ∈ 𝑦) → 𝑦 ∈ 𝐾) |
22 | | simpr 109 |
. . . . . . 7
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) ∧ 𝑦 ∈ 𝐾) ∧ (𝐹‘𝑃) ∈ 𝑦) → (𝐹‘𝑃) ∈ 𝑦) |
23 | | icnpimaex 12926 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘∪ 𝐾)
∧ 𝑃 ∈ 𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦)) → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) |
24 | 14, 15, 19, 20, 21, 22, 23 | syl33anc 1248 |
. . . . . 6
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) ∧ 𝑦 ∈ 𝐾) ∧ (𝐹‘𝑃) ∈ 𝑦) → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) |
25 | 24 | ex 114 |
. . . . 5
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) ∧ 𝑦 ∈ 𝐾) → ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦))) |
26 | | idd 21 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) → (𝑃 ∈ 𝑥 → 𝑃 ∈ 𝑥)) |
27 | 26, 17 | jctird 315 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) → (𝑃 ∈ 𝑥 → (𝑃 ∈ 𝑥 ∧ 𝑃 ∈ 𝐴))) |
28 | | elin 3310 |
. . . . . . . . . 10
⊢ (𝑃 ∈ (𝑥 ∩ 𝐴) ↔ (𝑃 ∈ 𝑥 ∧ 𝑃 ∈ 𝐴)) |
29 | 27, 28 | syl6ibr 161 |
. . . . . . . . 9
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) → (𝑃 ∈ 𝑥 → 𝑃 ∈ (𝑥 ∩ 𝐴))) |
30 | | inss1 3347 |
. . . . . . . . . . . 12
⊢ (𝑥 ∩ 𝐴) ⊆ 𝑥 |
31 | | imass2 4985 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∩ 𝐴) ⊆ 𝑥 → (𝐹 “ (𝑥 ∩ 𝐴)) ⊆ (𝐹 “ 𝑥)) |
32 | 30, 31 | ax-mp 5 |
. . . . . . . . . . 11
⊢ (𝐹 “ (𝑥 ∩ 𝐴)) ⊆ (𝐹 “ 𝑥) |
33 | | id 19 |
. . . . . . . . . . 11
⊢ ((𝐹 “ 𝑥) ⊆ 𝑦 → (𝐹 “ 𝑥) ⊆ 𝑦) |
34 | 32, 33 | sstrid 3158 |
. . . . . . . . . 10
⊢ ((𝐹 “ 𝑥) ⊆ 𝑦 → (𝐹 “ (𝑥 ∩ 𝐴)) ⊆ 𝑦) |
35 | 34 | a1i 9 |
. . . . . . . . 9
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) → ((𝐹 “ 𝑥) ⊆ 𝑦 → (𝐹 “ (𝑥 ∩ 𝐴)) ⊆ 𝑦)) |
36 | 29, 35 | anim12d 333 |
. . . . . . . 8
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) → ((𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦) → (𝑃 ∈ (𝑥 ∩ 𝐴) ∧ (𝐹 “ (𝑥 ∩ 𝐴)) ⊆ 𝑦))) |
37 | 36 | reximdv 2571 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) → (∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦) → ∃𝑥 ∈ 𝐽 (𝑃 ∈ (𝑥 ∩ 𝐴) ∧ (𝐹 “ (𝑥 ∩ 𝐴)) ⊆ 𝑦))) |
38 | | vex 2733 |
. . . . . . . . . 10
⊢ 𝑥 ∈ V |
39 | 38 | inex1 4121 |
. . . . . . . . 9
⊢ (𝑥 ∩ 𝐴) ∈ V |
40 | 39 | a1i 9 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) ∧ 𝑥 ∈ 𝐽) → (𝑥 ∩ 𝐴) ∈ V) |
41 | | topontop 12727 |
. . . . . . . . . 10
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) |
42 | 41 | ad2antrr 485 |
. . . . . . . . 9
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) → 𝐽 ∈ Top) |
43 | | uniexg 4422 |
. . . . . . . . . . 11
⊢ (𝐽 ∈ Top → ∪ 𝐽
∈ V) |
44 | 42, 43 | syl 14 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) → ∪
𝐽 ∈
V) |
45 | | toponuni 12728 |
. . . . . . . . . . . . 13
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) |
46 | 45 | sseq2d 3177 |
. . . . . . . . . . . 12
⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐴 ⊆ 𝑋 ↔ 𝐴 ⊆ ∪ 𝐽)) |
47 | 46 | ad2antrr 485 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) → (𝐴 ⊆ 𝑋 ↔ 𝐴 ⊆ ∪ 𝐽)) |
48 | 8, 47 | mpbid 146 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) → 𝐴 ⊆ ∪ 𝐽) |
49 | 44, 48 | ssexd 4127 |
. . . . . . . . 9
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) → 𝐴 ∈ V) |
50 | | elrest 12572 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ V) → (𝑧 ∈ (𝐽 ↾t 𝐴) ↔ ∃𝑥 ∈ 𝐽 𝑧 = (𝑥 ∩ 𝐴))) |
51 | 42, 49, 50 | syl2anc 409 |
. . . . . . . 8
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) → (𝑧 ∈ (𝐽 ↾t 𝐴) ↔ ∃𝑥 ∈ 𝐽 𝑧 = (𝑥 ∩ 𝐴))) |
52 | | simpr 109 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) ∧ 𝑧 = (𝑥 ∩ 𝐴)) → 𝑧 = (𝑥 ∩ 𝐴)) |
53 | 52 | eleq2d 2240 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) ∧ 𝑧 = (𝑥 ∩ 𝐴)) → (𝑃 ∈ 𝑧 ↔ 𝑃 ∈ (𝑥 ∩ 𝐴))) |
54 | 52 | imaeq2d 4951 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) ∧ 𝑧 = (𝑥 ∩ 𝐴)) → ((𝐹 ↾ 𝐴) “ 𝑧) = ((𝐹 ↾ 𝐴) “ (𝑥 ∩ 𝐴))) |
55 | | inss2 3348 |
. . . . . . . . . . . 12
⊢ (𝑥 ∩ 𝐴) ⊆ 𝐴 |
56 | | resima2 4923 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∩ 𝐴) ⊆ 𝐴 → ((𝐹 ↾ 𝐴) “ (𝑥 ∩ 𝐴)) = (𝐹 “ (𝑥 ∩ 𝐴))) |
57 | 55, 56 | ax-mp 5 |
. . . . . . . . . . 11
⊢ ((𝐹 ↾ 𝐴) “ (𝑥 ∩ 𝐴)) = (𝐹 “ (𝑥 ∩ 𝐴)) |
58 | 54, 57 | eqtrdi 2219 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) ∧ 𝑧 = (𝑥 ∩ 𝐴)) → ((𝐹 ↾ 𝐴) “ 𝑧) = (𝐹 “ (𝑥 ∩ 𝐴))) |
59 | 58 | sseq1d 3176 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) ∧ 𝑧 = (𝑥 ∩ 𝐴)) → (((𝐹 ↾ 𝐴) “ 𝑧) ⊆ 𝑦 ↔ (𝐹 “ (𝑥 ∩ 𝐴)) ⊆ 𝑦)) |
60 | 53, 59 | anbi12d 470 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) ∧ 𝑧 = (𝑥 ∩ 𝐴)) → ((𝑃 ∈ 𝑧 ∧ ((𝐹 ↾ 𝐴) “ 𝑧) ⊆ 𝑦) ↔ (𝑃 ∈ (𝑥 ∩ 𝐴) ∧ (𝐹 “ (𝑥 ∩ 𝐴)) ⊆ 𝑦))) |
61 | 40, 51, 60 | rexxfr2d 4448 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) → (∃𝑧 ∈ (𝐽 ↾t 𝐴)(𝑃 ∈ 𝑧 ∧ ((𝐹 ↾ 𝐴) “ 𝑧) ⊆ 𝑦) ↔ ∃𝑥 ∈ 𝐽 (𝑃 ∈ (𝑥 ∩ 𝐴) ∧ (𝐹 “ (𝑥 ∩ 𝐴)) ⊆ 𝑦))) |
62 | 37, 61 | sylibrd 168 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) → (∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦) → ∃𝑧 ∈ (𝐽 ↾t 𝐴)(𝑃 ∈ 𝑧 ∧ ((𝐹 ↾ 𝐴) “ 𝑧) ⊆ 𝑦))) |
63 | 62 | adantr 274 |
. . . . 5
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) ∧ 𝑦 ∈ 𝐾) → (∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦) → ∃𝑧 ∈ (𝐽 ↾t 𝐴)(𝑃 ∈ 𝑧 ∧ ((𝐹 ↾ 𝐴) “ 𝑧) ⊆ 𝑦))) |
64 | 25, 63 | syld 45 |
. . . 4
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) ∧ 𝑦 ∈ 𝐾) → ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑧 ∈ (𝐽 ↾t 𝐴)(𝑃 ∈ 𝑧 ∧ ((𝐹 ↾ 𝐴) “ 𝑧) ⊆ 𝑦))) |
65 | 13, 64 | sylbid 149 |
. . 3
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) ∧ 𝑦 ∈ 𝐾) → (((𝐹 ↾ 𝐴)‘𝑃) ∈ 𝑦 → ∃𝑧 ∈ (𝐽 ↾t 𝐴)(𝑃 ∈ 𝑧 ∧ ((𝐹 ↾ 𝐴) “ 𝑧) ⊆ 𝑦))) |
66 | 65 | ralrimiva 2543 |
. 2
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) → ∀𝑦 ∈ 𝐾 (((𝐹 ↾ 𝐴)‘𝑃) ∈ 𝑦 → ∃𝑧 ∈ (𝐽 ↾t 𝐴)(𝑃 ∈ 𝑧 ∧ ((𝐹 ↾ 𝐴) “ 𝑧) ⊆ 𝑦))) |
67 | | resttopon 12886 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴)) |
68 | 1, 8, 67 | syl2anc 409 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) → (𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴)) |
69 | | iscnp 12914 |
. . 3
⊢ (((𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴) ∧ 𝐾 ∈ (TopOn‘∪ 𝐾)
∧ 𝑃 ∈ 𝐴) → ((𝐹 ↾ 𝐴) ∈ (((𝐽 ↾t 𝐴) CnP 𝐾)‘𝑃) ↔ ((𝐹 ↾ 𝐴):𝐴⟶∪ 𝐾 ∧ ∀𝑦 ∈ 𝐾 (((𝐹 ↾ 𝐴)‘𝑃) ∈ 𝑦 → ∃𝑧 ∈ (𝐽 ↾t 𝐴)(𝑃 ∈ 𝑧 ∧ ((𝐹 ↾ 𝐴) “ 𝑧) ⊆ 𝑦))))) |
70 | 68, 4, 17, 69 | syl3anc 1233 |
. 2
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) → ((𝐹 ↾ 𝐴) ∈ (((𝐽 ↾t 𝐴) CnP 𝐾)‘𝑃) ↔ ((𝐹 ↾ 𝐴):𝐴⟶∪ 𝐾 ∧ ∀𝑦 ∈ 𝐾 (((𝐹 ↾ 𝐴)‘𝑃) ∈ 𝑦 → ∃𝑧 ∈ (𝐽 ↾t 𝐴)(𝑃 ∈ 𝑧 ∧ ((𝐹 ↾ 𝐴) “ 𝑧) ⊆ 𝑦))))) |
71 | 9, 66, 70 | mpbir2and 939 |
1
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) → (𝐹 ↾ 𝐴) ∈ (((𝐽 ↾t 𝐴) CnP 𝐾)‘𝑃)) |