ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnptopresti GIF version

Theorem cnptopresti 14906
Description: One direction of cnptoprest 14907 under the weaker condition that the point is in the subset rather than the interior of the subset. (Contributed by Mario Carneiro, 9-Feb-2015.) (Revised by Jim Kingdon, 31-Mar-2023.)
Assertion
Ref Expression
cnptopresti (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) → (𝐹𝐴) ∈ (((𝐽t 𝐴) CnP 𝐾)‘𝑃))

Proof of Theorem cnptopresti
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 527 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) → 𝐽 ∈ (TopOn‘𝑋))
2 toptopon2 14687 . . . . . 6 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
32biimpi 120 . . . . 5 (𝐾 ∈ Top → 𝐾 ∈ (TopOn‘ 𝐾))
43ad2antlr 489 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) → 𝐾 ∈ (TopOn‘ 𝐾))
5 simpr3 1029 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))
6 cnpf2 14875 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘ 𝐾) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹:𝑋 𝐾)
71, 4, 5, 6syl3anc 1271 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) → 𝐹:𝑋 𝐾)
8 simpr1 1027 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) → 𝐴𝑋)
97, 8fssresd 5501 . 2 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) → (𝐹𝐴):𝐴 𝐾)
10 simplr2 1064 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) ∧ 𝑦𝐾) → 𝑃𝐴)
11 fvres 5650 . . . . . 6 (𝑃𝐴 → ((𝐹𝐴)‘𝑃) = (𝐹𝑃))
1210, 11syl 14 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) ∧ 𝑦𝐾) → ((𝐹𝐴)‘𝑃) = (𝐹𝑃))
1312eleq1d 2298 . . . 4 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) ∧ 𝑦𝐾) → (((𝐹𝐴)‘𝑃) ∈ 𝑦 ↔ (𝐹𝑃) ∈ 𝑦))
141ad2antrr 488 . . . . . . 7 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) ∧ 𝑦𝐾) ∧ (𝐹𝑃) ∈ 𝑦) → 𝐽 ∈ (TopOn‘𝑋))
154ad2antrr 488 . . . . . . 7 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) ∧ 𝑦𝐾) ∧ (𝐹𝑃) ∈ 𝑦) → 𝐾 ∈ (TopOn‘ 𝐾))
168ad2antrr 488 . . . . . . . 8 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) ∧ 𝑦𝐾) ∧ (𝐹𝑃) ∈ 𝑦) → 𝐴𝑋)
17 simpr2 1028 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) → 𝑃𝐴)
1817ad2antrr 488 . . . . . . . 8 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) ∧ 𝑦𝐾) ∧ (𝐹𝑃) ∈ 𝑦) → 𝑃𝐴)
1916, 18sseldd 3225 . . . . . . 7 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) ∧ 𝑦𝐾) ∧ (𝐹𝑃) ∈ 𝑦) → 𝑃𝑋)
205ad2antrr 488 . . . . . . 7 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) ∧ 𝑦𝐾) ∧ (𝐹𝑃) ∈ 𝑦) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))
21 simplr 528 . . . . . . 7 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) ∧ 𝑦𝐾) ∧ (𝐹𝑃) ∈ 𝑦) → 𝑦𝐾)
22 simpr 110 . . . . . . 7 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) ∧ 𝑦𝐾) ∧ (𝐹𝑃) ∈ 𝑦) → (𝐹𝑃) ∈ 𝑦)
23 icnpimaex 14879 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘ 𝐾) ∧ 𝑃𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦)) → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦))
2414, 15, 19, 20, 21, 22, 23syl33anc 1286 . . . . . 6 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) ∧ 𝑦𝐾) ∧ (𝐹𝑃) ∈ 𝑦) → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦))
2524ex 115 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) ∧ 𝑦𝐾) → ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)))
26 idd 21 . . . . . . . . . . 11 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) → (𝑃𝑥𝑃𝑥))
2726, 17jctird 317 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) → (𝑃𝑥 → (𝑃𝑥𝑃𝐴)))
28 elin 3387 . . . . . . . . . 10 (𝑃 ∈ (𝑥𝐴) ↔ (𝑃𝑥𝑃𝐴))
2927, 28imbitrrdi 162 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) → (𝑃𝑥𝑃 ∈ (𝑥𝐴)))
30 inss1 3424 . . . . . . . . . . . 12 (𝑥𝐴) ⊆ 𝑥
31 imass2 5103 . . . . . . . . . . . 12 ((𝑥𝐴) ⊆ 𝑥 → (𝐹 “ (𝑥𝐴)) ⊆ (𝐹𝑥))
3230, 31ax-mp 5 . . . . . . . . . . 11 (𝐹 “ (𝑥𝐴)) ⊆ (𝐹𝑥)
33 id 19 . . . . . . . . . . 11 ((𝐹𝑥) ⊆ 𝑦 → (𝐹𝑥) ⊆ 𝑦)
3432, 33sstrid 3235 . . . . . . . . . 10 ((𝐹𝑥) ⊆ 𝑦 → (𝐹 “ (𝑥𝐴)) ⊆ 𝑦)
3534a1i 9 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) → ((𝐹𝑥) ⊆ 𝑦 → (𝐹 “ (𝑥𝐴)) ⊆ 𝑦))
3629, 35anim12d 335 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) → ((𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦) → (𝑃 ∈ (𝑥𝐴) ∧ (𝐹 “ (𝑥𝐴)) ⊆ 𝑦)))
3736reximdv 2631 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) → (∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦) → ∃𝑥𝐽 (𝑃 ∈ (𝑥𝐴) ∧ (𝐹 “ (𝑥𝐴)) ⊆ 𝑦)))
38 vex 2802 . . . . . . . . . 10 𝑥 ∈ V
3938inex1 4217 . . . . . . . . 9 (𝑥𝐴) ∈ V
4039a1i 9 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) ∧ 𝑥𝐽) → (𝑥𝐴) ∈ V)
41 topontop 14682 . . . . . . . . . 10 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
4241ad2antrr 488 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) → 𝐽 ∈ Top)
43 uniexg 4529 . . . . . . . . . . 11 (𝐽 ∈ Top → 𝐽 ∈ V)
4442, 43syl 14 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) → 𝐽 ∈ V)
45 toponuni 14683 . . . . . . . . . . . . 13 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
4645sseq2d 3254 . . . . . . . . . . . 12 (𝐽 ∈ (TopOn‘𝑋) → (𝐴𝑋𝐴 𝐽))
4746ad2antrr 488 . . . . . . . . . . 11 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) → (𝐴𝑋𝐴 𝐽))
488, 47mpbid 147 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) → 𝐴 𝐽)
4944, 48ssexd 4223 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) → 𝐴 ∈ V)
50 elrest 13274 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝐴 ∈ V) → (𝑧 ∈ (𝐽t 𝐴) ↔ ∃𝑥𝐽 𝑧 = (𝑥𝐴)))
5142, 49, 50syl2anc 411 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) → (𝑧 ∈ (𝐽t 𝐴) ↔ ∃𝑥𝐽 𝑧 = (𝑥𝐴)))
52 simpr 110 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) ∧ 𝑧 = (𝑥𝐴)) → 𝑧 = (𝑥𝐴))
5352eleq2d 2299 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) ∧ 𝑧 = (𝑥𝐴)) → (𝑃𝑧𝑃 ∈ (𝑥𝐴)))
5452imaeq2d 5067 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) ∧ 𝑧 = (𝑥𝐴)) → ((𝐹𝐴) “ 𝑧) = ((𝐹𝐴) “ (𝑥𝐴)))
55 inss2 3425 . . . . . . . . . . . 12 (𝑥𝐴) ⊆ 𝐴
56 resima2 5038 . . . . . . . . . . . 12 ((𝑥𝐴) ⊆ 𝐴 → ((𝐹𝐴) “ (𝑥𝐴)) = (𝐹 “ (𝑥𝐴)))
5755, 56ax-mp 5 . . . . . . . . . . 11 ((𝐹𝐴) “ (𝑥𝐴)) = (𝐹 “ (𝑥𝐴))
5854, 57eqtrdi 2278 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) ∧ 𝑧 = (𝑥𝐴)) → ((𝐹𝐴) “ 𝑧) = (𝐹 “ (𝑥𝐴)))
5958sseq1d 3253 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) ∧ 𝑧 = (𝑥𝐴)) → (((𝐹𝐴) “ 𝑧) ⊆ 𝑦 ↔ (𝐹 “ (𝑥𝐴)) ⊆ 𝑦))
6053, 59anbi12d 473 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) ∧ 𝑧 = (𝑥𝐴)) → ((𝑃𝑧 ∧ ((𝐹𝐴) “ 𝑧) ⊆ 𝑦) ↔ (𝑃 ∈ (𝑥𝐴) ∧ (𝐹 “ (𝑥𝐴)) ⊆ 𝑦)))
6140, 51, 60rexxfr2d 4555 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) → (∃𝑧 ∈ (𝐽t 𝐴)(𝑃𝑧 ∧ ((𝐹𝐴) “ 𝑧) ⊆ 𝑦) ↔ ∃𝑥𝐽 (𝑃 ∈ (𝑥𝐴) ∧ (𝐹 “ (𝑥𝐴)) ⊆ 𝑦)))
6237, 61sylibrd 169 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) → (∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦) → ∃𝑧 ∈ (𝐽t 𝐴)(𝑃𝑧 ∧ ((𝐹𝐴) “ 𝑧) ⊆ 𝑦)))
6362adantr 276 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) ∧ 𝑦𝐾) → (∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦) → ∃𝑧 ∈ (𝐽t 𝐴)(𝑃𝑧 ∧ ((𝐹𝐴) “ 𝑧) ⊆ 𝑦)))
6425, 63syld 45 . . . 4 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) ∧ 𝑦𝐾) → ((𝐹𝑃) ∈ 𝑦 → ∃𝑧 ∈ (𝐽t 𝐴)(𝑃𝑧 ∧ ((𝐹𝐴) “ 𝑧) ⊆ 𝑦)))
6513, 64sylbid 150 . . 3 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) ∧ 𝑦𝐾) → (((𝐹𝐴)‘𝑃) ∈ 𝑦 → ∃𝑧 ∈ (𝐽t 𝐴)(𝑃𝑧 ∧ ((𝐹𝐴) “ 𝑧) ⊆ 𝑦)))
6665ralrimiva 2603 . 2 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) → ∀𝑦𝐾 (((𝐹𝐴)‘𝑃) ∈ 𝑦 → ∃𝑧 ∈ (𝐽t 𝐴)(𝑃𝑧 ∧ ((𝐹𝐴) “ 𝑧) ⊆ 𝑦)))
67 resttopon 14839 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐽t 𝐴) ∈ (TopOn‘𝐴))
681, 8, 67syl2anc 411 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) → (𝐽t 𝐴) ∈ (TopOn‘𝐴))
69 iscnp 14867 . . 3 (((𝐽t 𝐴) ∈ (TopOn‘𝐴) ∧ 𝐾 ∈ (TopOn‘ 𝐾) ∧ 𝑃𝐴) → ((𝐹𝐴) ∈ (((𝐽t 𝐴) CnP 𝐾)‘𝑃) ↔ ((𝐹𝐴):𝐴 𝐾 ∧ ∀𝑦𝐾 (((𝐹𝐴)‘𝑃) ∈ 𝑦 → ∃𝑧 ∈ (𝐽t 𝐴)(𝑃𝑧 ∧ ((𝐹𝐴) “ 𝑧) ⊆ 𝑦)))))
7068, 4, 17, 69syl3anc 1271 . 2 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) → ((𝐹𝐴) ∈ (((𝐽t 𝐴) CnP 𝐾)‘𝑃) ↔ ((𝐹𝐴):𝐴 𝐾 ∧ ∀𝑦𝐾 (((𝐹𝐴)‘𝑃) ∈ 𝑦 → ∃𝑧 ∈ (𝐽t 𝐴)(𝑃𝑧 ∧ ((𝐹𝐴) “ 𝑧) ⊆ 𝑦)))))
719, 66, 70mpbir2and 950 1 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) → (𝐹𝐴) ∈ (((𝐽t 𝐴) CnP 𝐾)‘𝑃))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 1002   = wceq 1395  wcel 2200  wral 2508  wrex 2509  Vcvv 2799  cin 3196  wss 3197   cuni 3887  cres 4720  cima 4721  wf 5313  cfv 5317  (class class class)co 6000  t crest 13267  Topctop 14665  TopOnctopon 14678   CnP ccnp 14854
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-map 6795  df-rest 13269  df-topgen 13288  df-top 14666  df-topon 14679  df-bases 14711  df-cnp 14857
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator