ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnptopresti GIF version

Theorem cnptopresti 14474
Description: One direction of cnptoprest 14475 under the weaker condition that the point is in the subset rather than the interior of the subset. (Contributed by Mario Carneiro, 9-Feb-2015.) (Revised by Jim Kingdon, 31-Mar-2023.)
Assertion
Ref Expression
cnptopresti (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) → (𝐹𝐴) ∈ (((𝐽t 𝐴) CnP 𝐾)‘𝑃))

Proof of Theorem cnptopresti
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 527 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) → 𝐽 ∈ (TopOn‘𝑋))
2 toptopon2 14255 . . . . . 6 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
32biimpi 120 . . . . 5 (𝐾 ∈ Top → 𝐾 ∈ (TopOn‘ 𝐾))
43ad2antlr 489 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) → 𝐾 ∈ (TopOn‘ 𝐾))
5 simpr3 1007 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))
6 cnpf2 14443 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘ 𝐾) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹:𝑋 𝐾)
71, 4, 5, 6syl3anc 1249 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) → 𝐹:𝑋 𝐾)
8 simpr1 1005 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) → 𝐴𝑋)
97, 8fssresd 5434 . 2 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) → (𝐹𝐴):𝐴 𝐾)
10 simplr2 1042 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) ∧ 𝑦𝐾) → 𝑃𝐴)
11 fvres 5582 . . . . . 6 (𝑃𝐴 → ((𝐹𝐴)‘𝑃) = (𝐹𝑃))
1210, 11syl 14 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) ∧ 𝑦𝐾) → ((𝐹𝐴)‘𝑃) = (𝐹𝑃))
1312eleq1d 2265 . . . 4 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) ∧ 𝑦𝐾) → (((𝐹𝐴)‘𝑃) ∈ 𝑦 ↔ (𝐹𝑃) ∈ 𝑦))
141ad2antrr 488 . . . . . . 7 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) ∧ 𝑦𝐾) ∧ (𝐹𝑃) ∈ 𝑦) → 𝐽 ∈ (TopOn‘𝑋))
154ad2antrr 488 . . . . . . 7 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) ∧ 𝑦𝐾) ∧ (𝐹𝑃) ∈ 𝑦) → 𝐾 ∈ (TopOn‘ 𝐾))
168ad2antrr 488 . . . . . . . 8 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) ∧ 𝑦𝐾) ∧ (𝐹𝑃) ∈ 𝑦) → 𝐴𝑋)
17 simpr2 1006 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) → 𝑃𝐴)
1817ad2antrr 488 . . . . . . . 8 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) ∧ 𝑦𝐾) ∧ (𝐹𝑃) ∈ 𝑦) → 𝑃𝐴)
1916, 18sseldd 3184 . . . . . . 7 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) ∧ 𝑦𝐾) ∧ (𝐹𝑃) ∈ 𝑦) → 𝑃𝑋)
205ad2antrr 488 . . . . . . 7 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) ∧ 𝑦𝐾) ∧ (𝐹𝑃) ∈ 𝑦) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))
21 simplr 528 . . . . . . 7 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) ∧ 𝑦𝐾) ∧ (𝐹𝑃) ∈ 𝑦) → 𝑦𝐾)
22 simpr 110 . . . . . . 7 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) ∧ 𝑦𝐾) ∧ (𝐹𝑃) ∈ 𝑦) → (𝐹𝑃) ∈ 𝑦)
23 icnpimaex 14447 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘ 𝐾) ∧ 𝑃𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦)) → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦))
2414, 15, 19, 20, 21, 22, 23syl33anc 1264 . . . . . 6 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) ∧ 𝑦𝐾) ∧ (𝐹𝑃) ∈ 𝑦) → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦))
2524ex 115 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) ∧ 𝑦𝐾) → ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)))
26 idd 21 . . . . . . . . . . 11 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) → (𝑃𝑥𝑃𝑥))
2726, 17jctird 317 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) → (𝑃𝑥 → (𝑃𝑥𝑃𝐴)))
28 elin 3346 . . . . . . . . . 10 (𝑃 ∈ (𝑥𝐴) ↔ (𝑃𝑥𝑃𝐴))
2927, 28imbitrrdi 162 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) → (𝑃𝑥𝑃 ∈ (𝑥𝐴)))
30 inss1 3383 . . . . . . . . . . . 12 (𝑥𝐴) ⊆ 𝑥
31 imass2 5045 . . . . . . . . . . . 12 ((𝑥𝐴) ⊆ 𝑥 → (𝐹 “ (𝑥𝐴)) ⊆ (𝐹𝑥))
3230, 31ax-mp 5 . . . . . . . . . . 11 (𝐹 “ (𝑥𝐴)) ⊆ (𝐹𝑥)
33 id 19 . . . . . . . . . . 11 ((𝐹𝑥) ⊆ 𝑦 → (𝐹𝑥) ⊆ 𝑦)
3432, 33sstrid 3194 . . . . . . . . . 10 ((𝐹𝑥) ⊆ 𝑦 → (𝐹 “ (𝑥𝐴)) ⊆ 𝑦)
3534a1i 9 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) → ((𝐹𝑥) ⊆ 𝑦 → (𝐹 “ (𝑥𝐴)) ⊆ 𝑦))
3629, 35anim12d 335 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) → ((𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦) → (𝑃 ∈ (𝑥𝐴) ∧ (𝐹 “ (𝑥𝐴)) ⊆ 𝑦)))
3736reximdv 2598 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) → (∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦) → ∃𝑥𝐽 (𝑃 ∈ (𝑥𝐴) ∧ (𝐹 “ (𝑥𝐴)) ⊆ 𝑦)))
38 vex 2766 . . . . . . . . . 10 𝑥 ∈ V
3938inex1 4167 . . . . . . . . 9 (𝑥𝐴) ∈ V
4039a1i 9 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) ∧ 𝑥𝐽) → (𝑥𝐴) ∈ V)
41 topontop 14250 . . . . . . . . . 10 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
4241ad2antrr 488 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) → 𝐽 ∈ Top)
43 uniexg 4474 . . . . . . . . . . 11 (𝐽 ∈ Top → 𝐽 ∈ V)
4442, 43syl 14 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) → 𝐽 ∈ V)
45 toponuni 14251 . . . . . . . . . . . . 13 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
4645sseq2d 3213 . . . . . . . . . . . 12 (𝐽 ∈ (TopOn‘𝑋) → (𝐴𝑋𝐴 𝐽))
4746ad2antrr 488 . . . . . . . . . . 11 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) → (𝐴𝑋𝐴 𝐽))
488, 47mpbid 147 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) → 𝐴 𝐽)
4944, 48ssexd 4173 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) → 𝐴 ∈ V)
50 elrest 12917 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝐴 ∈ V) → (𝑧 ∈ (𝐽t 𝐴) ↔ ∃𝑥𝐽 𝑧 = (𝑥𝐴)))
5142, 49, 50syl2anc 411 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) → (𝑧 ∈ (𝐽t 𝐴) ↔ ∃𝑥𝐽 𝑧 = (𝑥𝐴)))
52 simpr 110 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) ∧ 𝑧 = (𝑥𝐴)) → 𝑧 = (𝑥𝐴))
5352eleq2d 2266 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) ∧ 𝑧 = (𝑥𝐴)) → (𝑃𝑧𝑃 ∈ (𝑥𝐴)))
5452imaeq2d 5009 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) ∧ 𝑧 = (𝑥𝐴)) → ((𝐹𝐴) “ 𝑧) = ((𝐹𝐴) “ (𝑥𝐴)))
55 inss2 3384 . . . . . . . . . . . 12 (𝑥𝐴) ⊆ 𝐴
56 resima2 4980 . . . . . . . . . . . 12 ((𝑥𝐴) ⊆ 𝐴 → ((𝐹𝐴) “ (𝑥𝐴)) = (𝐹 “ (𝑥𝐴)))
5755, 56ax-mp 5 . . . . . . . . . . 11 ((𝐹𝐴) “ (𝑥𝐴)) = (𝐹 “ (𝑥𝐴))
5854, 57eqtrdi 2245 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) ∧ 𝑧 = (𝑥𝐴)) → ((𝐹𝐴) “ 𝑧) = (𝐹 “ (𝑥𝐴)))
5958sseq1d 3212 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) ∧ 𝑧 = (𝑥𝐴)) → (((𝐹𝐴) “ 𝑧) ⊆ 𝑦 ↔ (𝐹 “ (𝑥𝐴)) ⊆ 𝑦))
6053, 59anbi12d 473 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) ∧ 𝑧 = (𝑥𝐴)) → ((𝑃𝑧 ∧ ((𝐹𝐴) “ 𝑧) ⊆ 𝑦) ↔ (𝑃 ∈ (𝑥𝐴) ∧ (𝐹 “ (𝑥𝐴)) ⊆ 𝑦)))
6140, 51, 60rexxfr2d 4500 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) → (∃𝑧 ∈ (𝐽t 𝐴)(𝑃𝑧 ∧ ((𝐹𝐴) “ 𝑧) ⊆ 𝑦) ↔ ∃𝑥𝐽 (𝑃 ∈ (𝑥𝐴) ∧ (𝐹 “ (𝑥𝐴)) ⊆ 𝑦)))
6237, 61sylibrd 169 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) → (∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦) → ∃𝑧 ∈ (𝐽t 𝐴)(𝑃𝑧 ∧ ((𝐹𝐴) “ 𝑧) ⊆ 𝑦)))
6362adantr 276 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) ∧ 𝑦𝐾) → (∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦) → ∃𝑧 ∈ (𝐽t 𝐴)(𝑃𝑧 ∧ ((𝐹𝐴) “ 𝑧) ⊆ 𝑦)))
6425, 63syld 45 . . . 4 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) ∧ 𝑦𝐾) → ((𝐹𝑃) ∈ 𝑦 → ∃𝑧 ∈ (𝐽t 𝐴)(𝑃𝑧 ∧ ((𝐹𝐴) “ 𝑧) ⊆ 𝑦)))
6513, 64sylbid 150 . . 3 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) ∧ 𝑦𝐾) → (((𝐹𝐴)‘𝑃) ∈ 𝑦 → ∃𝑧 ∈ (𝐽t 𝐴)(𝑃𝑧 ∧ ((𝐹𝐴) “ 𝑧) ⊆ 𝑦)))
6665ralrimiva 2570 . 2 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) → ∀𝑦𝐾 (((𝐹𝐴)‘𝑃) ∈ 𝑦 → ∃𝑧 ∈ (𝐽t 𝐴)(𝑃𝑧 ∧ ((𝐹𝐴) “ 𝑧) ⊆ 𝑦)))
67 resttopon 14407 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐽t 𝐴) ∈ (TopOn‘𝐴))
681, 8, 67syl2anc 411 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) → (𝐽t 𝐴) ∈ (TopOn‘𝐴))
69 iscnp 14435 . . 3 (((𝐽t 𝐴) ∈ (TopOn‘𝐴) ∧ 𝐾 ∈ (TopOn‘ 𝐾) ∧ 𝑃𝐴) → ((𝐹𝐴) ∈ (((𝐽t 𝐴) CnP 𝐾)‘𝑃) ↔ ((𝐹𝐴):𝐴 𝐾 ∧ ∀𝑦𝐾 (((𝐹𝐴)‘𝑃) ∈ 𝑦 → ∃𝑧 ∈ (𝐽t 𝐴)(𝑃𝑧 ∧ ((𝐹𝐴) “ 𝑧) ⊆ 𝑦)))))
7068, 4, 17, 69syl3anc 1249 . 2 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) → ((𝐹𝐴) ∈ (((𝐽t 𝐴) CnP 𝐾)‘𝑃) ↔ ((𝐹𝐴):𝐴 𝐾 ∧ ∀𝑦𝐾 (((𝐹𝐴)‘𝑃) ∈ 𝑦 → ∃𝑧 ∈ (𝐽t 𝐴)(𝑃𝑧 ∧ ((𝐹𝐴) “ 𝑧) ⊆ 𝑦)))))
719, 66, 70mpbir2and 946 1 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) → (𝐹𝐴) ∈ (((𝐽t 𝐴) CnP 𝐾)‘𝑃))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2167  wral 2475  wrex 2476  Vcvv 2763  cin 3156  wss 3157   cuni 3839  cres 4665  cima 4666  wf 5254  cfv 5258  (class class class)co 5922  t crest 12910  Topctop 14233  TopOnctopon 14246   CnP ccnp 14422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-map 6709  df-rest 12912  df-topgen 12931  df-top 14234  df-topon 14247  df-bases 14279  df-cnp 14425
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator