| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fco | GIF version | ||
| Description: Composition of two mappings. (Contributed by NM, 29-Aug-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| fco | ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → (𝐹 ∘ 𝐺):𝐴⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-f 5272 | . . 3 ⊢ (𝐹:𝐵⟶𝐶 ↔ (𝐹 Fn 𝐵 ∧ ran 𝐹 ⊆ 𝐶)) | |
| 2 | df-f 5272 | . . 3 ⊢ (𝐺:𝐴⟶𝐵 ↔ (𝐺 Fn 𝐴 ∧ ran 𝐺 ⊆ 𝐵)) | |
| 3 | fnco 5378 | . . . . . . 7 ⊢ ((𝐹 Fn 𝐵 ∧ 𝐺 Fn 𝐴 ∧ ran 𝐺 ⊆ 𝐵) → (𝐹 ∘ 𝐺) Fn 𝐴) | |
| 4 | 3 | 3expib 1208 | . . . . . 6 ⊢ (𝐹 Fn 𝐵 → ((𝐺 Fn 𝐴 ∧ ran 𝐺 ⊆ 𝐵) → (𝐹 ∘ 𝐺) Fn 𝐴)) |
| 5 | 4 | adantr 276 | . . . . 5 ⊢ ((𝐹 Fn 𝐵 ∧ ran 𝐹 ⊆ 𝐶) → ((𝐺 Fn 𝐴 ∧ ran 𝐺 ⊆ 𝐵) → (𝐹 ∘ 𝐺) Fn 𝐴)) |
| 6 | rncoss 4946 | . . . . . . 7 ⊢ ran (𝐹 ∘ 𝐺) ⊆ ran 𝐹 | |
| 7 | sstr 3200 | . . . . . . 7 ⊢ ((ran (𝐹 ∘ 𝐺) ⊆ ran 𝐹 ∧ ran 𝐹 ⊆ 𝐶) → ran (𝐹 ∘ 𝐺) ⊆ 𝐶) | |
| 8 | 6, 7 | mpan 424 | . . . . . 6 ⊢ (ran 𝐹 ⊆ 𝐶 → ran (𝐹 ∘ 𝐺) ⊆ 𝐶) |
| 9 | 8 | adantl 277 | . . . . 5 ⊢ ((𝐹 Fn 𝐵 ∧ ran 𝐹 ⊆ 𝐶) → ran (𝐹 ∘ 𝐺) ⊆ 𝐶) |
| 10 | 5, 9 | jctird 317 | . . . 4 ⊢ ((𝐹 Fn 𝐵 ∧ ran 𝐹 ⊆ 𝐶) → ((𝐺 Fn 𝐴 ∧ ran 𝐺 ⊆ 𝐵) → ((𝐹 ∘ 𝐺) Fn 𝐴 ∧ ran (𝐹 ∘ 𝐺) ⊆ 𝐶))) |
| 11 | 10 | imp 124 | . . 3 ⊢ (((𝐹 Fn 𝐵 ∧ ran 𝐹 ⊆ 𝐶) ∧ (𝐺 Fn 𝐴 ∧ ran 𝐺 ⊆ 𝐵)) → ((𝐹 ∘ 𝐺) Fn 𝐴 ∧ ran (𝐹 ∘ 𝐺) ⊆ 𝐶)) |
| 12 | 1, 2, 11 | syl2anb 291 | . 2 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → ((𝐹 ∘ 𝐺) Fn 𝐴 ∧ ran (𝐹 ∘ 𝐺) ⊆ 𝐶)) |
| 13 | df-f 5272 | . 2 ⊢ ((𝐹 ∘ 𝐺):𝐴⟶𝐶 ↔ ((𝐹 ∘ 𝐺) Fn 𝐴 ∧ ran (𝐹 ∘ 𝐺) ⊆ 𝐶)) | |
| 14 | 12, 13 | sylibr 134 | 1 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → (𝐹 ∘ 𝐺):𝐴⟶𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ⊆ wss 3165 ran crn 4674 ∘ ccom 4677 Fn wfn 5263 ⟶wf 5264 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-br 4044 df-opab 4105 df-id 4338 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-fun 5270 df-fn 5271 df-f 5272 |
| This theorem is referenced by: fco2 5436 f1co 5487 foco 5503 mapen 6925 ctm 7193 enomnilem 7222 enmkvlem 7245 enwomnilem 7253 fnn0nninf 10564 seqf1oglem2 10646 fsumcl2lem 11628 fsumadd 11636 fprodmul 11821 algcvg 12289 mhmco 13240 gsumwmhm 13248 gsumfzreidx 13591 gsumfzmhm 13597 psrnegcl 14363 cnco 14611 cnptopco 14612 lmtopcnp 14640 cnmpt11 14673 cnmpt21 14681 comet 14889 cnmet 14920 cnfldms 14926 cncfco 14981 limccnpcntop 15065 dvcoapbr 15097 dvcjbr 15098 dvcj 15099 |
| Copyright terms: Public domain | W3C validator |