ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fco GIF version

Theorem fco 5400
Description: Composition of two mappings. (Contributed by NM, 29-Aug-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
fco ((𝐹:𝐵𝐶𝐺:𝐴𝐵) → (𝐹𝐺):𝐴𝐶)

Proof of Theorem fco
StepHypRef Expression
1 df-f 5239 . . 3 (𝐹:𝐵𝐶 ↔ (𝐹 Fn 𝐵 ∧ ran 𝐹𝐶))
2 df-f 5239 . . 3 (𝐺:𝐴𝐵 ↔ (𝐺 Fn 𝐴 ∧ ran 𝐺𝐵))
3 fnco 5343 . . . . . . 7 ((𝐹 Fn 𝐵𝐺 Fn 𝐴 ∧ ran 𝐺𝐵) → (𝐹𝐺) Fn 𝐴)
433expib 1208 . . . . . 6 (𝐹 Fn 𝐵 → ((𝐺 Fn 𝐴 ∧ ran 𝐺𝐵) → (𝐹𝐺) Fn 𝐴))
54adantr 276 . . . . 5 ((𝐹 Fn 𝐵 ∧ ran 𝐹𝐶) → ((𝐺 Fn 𝐴 ∧ ran 𝐺𝐵) → (𝐹𝐺) Fn 𝐴))
6 rncoss 4915 . . . . . . 7 ran (𝐹𝐺) ⊆ ran 𝐹
7 sstr 3178 . . . . . . 7 ((ran (𝐹𝐺) ⊆ ran 𝐹 ∧ ran 𝐹𝐶) → ran (𝐹𝐺) ⊆ 𝐶)
86, 7mpan 424 . . . . . 6 (ran 𝐹𝐶 → ran (𝐹𝐺) ⊆ 𝐶)
98adantl 277 . . . . 5 ((𝐹 Fn 𝐵 ∧ ran 𝐹𝐶) → ran (𝐹𝐺) ⊆ 𝐶)
105, 9jctird 317 . . . 4 ((𝐹 Fn 𝐵 ∧ ran 𝐹𝐶) → ((𝐺 Fn 𝐴 ∧ ran 𝐺𝐵) → ((𝐹𝐺) Fn 𝐴 ∧ ran (𝐹𝐺) ⊆ 𝐶)))
1110imp 124 . . 3 (((𝐹 Fn 𝐵 ∧ ran 𝐹𝐶) ∧ (𝐺 Fn 𝐴 ∧ ran 𝐺𝐵)) → ((𝐹𝐺) Fn 𝐴 ∧ ran (𝐹𝐺) ⊆ 𝐶))
121, 2, 11syl2anb 291 . 2 ((𝐹:𝐵𝐶𝐺:𝐴𝐵) → ((𝐹𝐺) Fn 𝐴 ∧ ran (𝐹𝐺) ⊆ 𝐶))
13 df-f 5239 . 2 ((𝐹𝐺):𝐴𝐶 ↔ ((𝐹𝐺) Fn 𝐴 ∧ ran (𝐹𝐺) ⊆ 𝐶))
1412, 13sylibr 134 1 ((𝐹:𝐵𝐶𝐺:𝐴𝐵) → (𝐹𝐺):𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wss 3144  ran crn 4645  ccom 4648   Fn wfn 5230  wf 5231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-br 4019  df-opab 4080  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-fun 5237  df-fn 5238  df-f 5239
This theorem is referenced by:  fco2  5401  f1co  5452  foco  5467  mapen  6875  ctm  7139  enomnilem  7167  enmkvlem  7190  enwomnilem  7198  fnn0nninf  10470  fsumcl2lem  11441  fsumadd  11449  fprodmul  11634  algcvg  12083  mhmco  12957  cnco  14198  cnptopco  14199  lmtopcnp  14227  cnmpt11  14260  cnmpt21  14268  comet  14476  cnmet  14507  cncfco  14555  limccnpcntop  14621  dvcoapbr  14648  dvcjbr  14649  dvcj  14650
  Copyright terms: Public domain W3C validator