ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fco GIF version

Theorem fco 5426
Description: Composition of two mappings. (Contributed by NM, 29-Aug-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
fco ((𝐹:𝐵𝐶𝐺:𝐴𝐵) → (𝐹𝐺):𝐴𝐶)

Proof of Theorem fco
StepHypRef Expression
1 df-f 5263 . . 3 (𝐹:𝐵𝐶 ↔ (𝐹 Fn 𝐵 ∧ ran 𝐹𝐶))
2 df-f 5263 . . 3 (𝐺:𝐴𝐵 ↔ (𝐺 Fn 𝐴 ∧ ran 𝐺𝐵))
3 fnco 5369 . . . . . . 7 ((𝐹 Fn 𝐵𝐺 Fn 𝐴 ∧ ran 𝐺𝐵) → (𝐹𝐺) Fn 𝐴)
433expib 1208 . . . . . 6 (𝐹 Fn 𝐵 → ((𝐺 Fn 𝐴 ∧ ran 𝐺𝐵) → (𝐹𝐺) Fn 𝐴))
54adantr 276 . . . . 5 ((𝐹 Fn 𝐵 ∧ ran 𝐹𝐶) → ((𝐺 Fn 𝐴 ∧ ran 𝐺𝐵) → (𝐹𝐺) Fn 𝐴))
6 rncoss 4937 . . . . . . 7 ran (𝐹𝐺) ⊆ ran 𝐹
7 sstr 3192 . . . . . . 7 ((ran (𝐹𝐺) ⊆ ran 𝐹 ∧ ran 𝐹𝐶) → ran (𝐹𝐺) ⊆ 𝐶)
86, 7mpan 424 . . . . . 6 (ran 𝐹𝐶 → ran (𝐹𝐺) ⊆ 𝐶)
98adantl 277 . . . . 5 ((𝐹 Fn 𝐵 ∧ ran 𝐹𝐶) → ran (𝐹𝐺) ⊆ 𝐶)
105, 9jctird 317 . . . 4 ((𝐹 Fn 𝐵 ∧ ran 𝐹𝐶) → ((𝐺 Fn 𝐴 ∧ ran 𝐺𝐵) → ((𝐹𝐺) Fn 𝐴 ∧ ran (𝐹𝐺) ⊆ 𝐶)))
1110imp 124 . . 3 (((𝐹 Fn 𝐵 ∧ ran 𝐹𝐶) ∧ (𝐺 Fn 𝐴 ∧ ran 𝐺𝐵)) → ((𝐹𝐺) Fn 𝐴 ∧ ran (𝐹𝐺) ⊆ 𝐶))
121, 2, 11syl2anb 291 . 2 ((𝐹:𝐵𝐶𝐺:𝐴𝐵) → ((𝐹𝐺) Fn 𝐴 ∧ ran (𝐹𝐺) ⊆ 𝐶))
13 df-f 5263 . 2 ((𝐹𝐺):𝐴𝐶 ↔ ((𝐹𝐺) Fn 𝐴 ∧ ran (𝐹𝐺) ⊆ 𝐶))
1412, 13sylibr 134 1 ((𝐹:𝐵𝐶𝐺:𝐴𝐵) → (𝐹𝐺):𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wss 3157  ran crn 4665  ccom 4668   Fn wfn 5254  wf 5255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-fun 5261  df-fn 5262  df-f 5263
This theorem is referenced by:  fco2  5427  f1co  5478  foco  5494  mapen  6916  ctm  7184  enomnilem  7213  enmkvlem  7236  enwomnilem  7244  fnn0nninf  10549  seqf1oglem2  10631  fsumcl2lem  11582  fsumadd  11590  fprodmul  11775  algcvg  12243  mhmco  13194  gsumwmhm  13202  gsumfzreidx  13545  gsumfzmhm  13551  psrnegcl  14317  cnco  14565  cnptopco  14566  lmtopcnp  14594  cnmpt11  14627  cnmpt21  14635  comet  14843  cnmet  14874  cnfldms  14880  cncfco  14935  limccnpcntop  15019  dvcoapbr  15051  dvcjbr  15052  dvcj  15053
  Copyright terms: Public domain W3C validator