ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fco GIF version

Theorem fco 5296
Description: Composition of two mappings. (Contributed by NM, 29-Aug-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
fco ((𝐹:𝐵𝐶𝐺:𝐴𝐵) → (𝐹𝐺):𝐴𝐶)

Proof of Theorem fco
StepHypRef Expression
1 df-f 5135 . . 3 (𝐹:𝐵𝐶 ↔ (𝐹 Fn 𝐵 ∧ ran 𝐹𝐶))
2 df-f 5135 . . 3 (𝐺:𝐴𝐵 ↔ (𝐺 Fn 𝐴 ∧ ran 𝐺𝐵))
3 fnco 5239 . . . . . . 7 ((𝐹 Fn 𝐵𝐺 Fn 𝐴 ∧ ran 𝐺𝐵) → (𝐹𝐺) Fn 𝐴)
433expib 1185 . . . . . 6 (𝐹 Fn 𝐵 → ((𝐺 Fn 𝐴 ∧ ran 𝐺𝐵) → (𝐹𝐺) Fn 𝐴))
54adantr 274 . . . . 5 ((𝐹 Fn 𝐵 ∧ ran 𝐹𝐶) → ((𝐺 Fn 𝐴 ∧ ran 𝐺𝐵) → (𝐹𝐺) Fn 𝐴))
6 rncoss 4817 . . . . . . 7 ran (𝐹𝐺) ⊆ ran 𝐹
7 sstr 3110 . . . . . . 7 ((ran (𝐹𝐺) ⊆ ran 𝐹 ∧ ran 𝐹𝐶) → ran (𝐹𝐺) ⊆ 𝐶)
86, 7mpan 421 . . . . . 6 (ran 𝐹𝐶 → ran (𝐹𝐺) ⊆ 𝐶)
98adantl 275 . . . . 5 ((𝐹 Fn 𝐵 ∧ ran 𝐹𝐶) → ran (𝐹𝐺) ⊆ 𝐶)
105, 9jctird 315 . . . 4 ((𝐹 Fn 𝐵 ∧ ran 𝐹𝐶) → ((𝐺 Fn 𝐴 ∧ ran 𝐺𝐵) → ((𝐹𝐺) Fn 𝐴 ∧ ran (𝐹𝐺) ⊆ 𝐶)))
1110imp 123 . . 3 (((𝐹 Fn 𝐵 ∧ ran 𝐹𝐶) ∧ (𝐺 Fn 𝐴 ∧ ran 𝐺𝐵)) → ((𝐹𝐺) Fn 𝐴 ∧ ran (𝐹𝐺) ⊆ 𝐶))
121, 2, 11syl2anb 289 . 2 ((𝐹:𝐵𝐶𝐺:𝐴𝐵) → ((𝐹𝐺) Fn 𝐴 ∧ ran (𝐹𝐺) ⊆ 𝐶))
13 df-f 5135 . 2 ((𝐹𝐺):𝐴𝐶 ↔ ((𝐹𝐺) Fn 𝐴 ∧ ran (𝐹𝐺) ⊆ 𝐶))
1412, 13sylibr 133 1 ((𝐹:𝐵𝐶𝐺:𝐴𝐵) → (𝐹𝐺):𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wss 3076  ran crn 4548  ccom 4551   Fn wfn 5126  wf 5127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-br 3938  df-opab 3998  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-fun 5133  df-fn 5134  df-f 5135
This theorem is referenced by:  fco2  5297  f1co  5348  foco  5363  mapen  6748  ctm  7002  enomnilem  7018  enmkvlem  7043  enwomnilem  7050  fnn0nninf  10241  fsumcl2lem  11199  fsumadd  11207  algcvg  11765  cnco  12429  cnptopco  12430  lmtopcnp  12458  cnmpt11  12491  cnmpt21  12499  comet  12707  cnmet  12738  cncfco  12786  limccnpcntop  12852  dvcoapbr  12879  dvcjbr  12880  dvcj  12881
  Copyright terms: Public domain W3C validator