ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fco GIF version

Theorem fco 5256
Description: Composition of two mappings. (Contributed by NM, 29-Aug-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
fco ((𝐹:𝐵𝐶𝐺:𝐴𝐵) → (𝐹𝐺):𝐴𝐶)

Proof of Theorem fco
StepHypRef Expression
1 df-f 5095 . . 3 (𝐹:𝐵𝐶 ↔ (𝐹 Fn 𝐵 ∧ ran 𝐹𝐶))
2 df-f 5095 . . 3 (𝐺:𝐴𝐵 ↔ (𝐺 Fn 𝐴 ∧ ran 𝐺𝐵))
3 fnco 5199 . . . . . . 7 ((𝐹 Fn 𝐵𝐺 Fn 𝐴 ∧ ran 𝐺𝐵) → (𝐹𝐺) Fn 𝐴)
433expib 1167 . . . . . 6 (𝐹 Fn 𝐵 → ((𝐺 Fn 𝐴 ∧ ran 𝐺𝐵) → (𝐹𝐺) Fn 𝐴))
54adantr 272 . . . . 5 ((𝐹 Fn 𝐵 ∧ ran 𝐹𝐶) → ((𝐺 Fn 𝐴 ∧ ran 𝐺𝐵) → (𝐹𝐺) Fn 𝐴))
6 rncoss 4777 . . . . . . 7 ran (𝐹𝐺) ⊆ ran 𝐹
7 sstr 3073 . . . . . . 7 ((ran (𝐹𝐺) ⊆ ran 𝐹 ∧ ran 𝐹𝐶) → ran (𝐹𝐺) ⊆ 𝐶)
86, 7mpan 418 . . . . . 6 (ran 𝐹𝐶 → ran (𝐹𝐺) ⊆ 𝐶)
98adantl 273 . . . . 5 ((𝐹 Fn 𝐵 ∧ ran 𝐹𝐶) → ran (𝐹𝐺) ⊆ 𝐶)
105, 9jctird 313 . . . 4 ((𝐹 Fn 𝐵 ∧ ran 𝐹𝐶) → ((𝐺 Fn 𝐴 ∧ ran 𝐺𝐵) → ((𝐹𝐺) Fn 𝐴 ∧ ran (𝐹𝐺) ⊆ 𝐶)))
1110imp 123 . . 3 (((𝐹 Fn 𝐵 ∧ ran 𝐹𝐶) ∧ (𝐺 Fn 𝐴 ∧ ran 𝐺𝐵)) → ((𝐹𝐺) Fn 𝐴 ∧ ran (𝐹𝐺) ⊆ 𝐶))
121, 2, 11syl2anb 287 . 2 ((𝐹:𝐵𝐶𝐺:𝐴𝐵) → ((𝐹𝐺) Fn 𝐴 ∧ ran (𝐹𝐺) ⊆ 𝐶))
13 df-f 5095 . 2 ((𝐹𝐺):𝐴𝐶 ↔ ((𝐹𝐺) Fn 𝐴 ∧ ran (𝐹𝐺) ⊆ 𝐶))
1412, 13sylibr 133 1 ((𝐹:𝐵𝐶𝐺:𝐴𝐵) → (𝐹𝐺):𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wss 3039  ran crn 4508  ccom 4511   Fn wfn 5086  wf 5087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ral 2396  df-rex 2397  df-v 2660  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-br 3898  df-opab 3958  df-id 4183  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-fun 5093  df-fn 5094  df-f 5095
This theorem is referenced by:  fco2  5257  f1co  5308  foco  5323  mapen  6706  ctm  6960  enomnilem  6976  fnn0nninf  10150  fsumcl2lem  11107  fsumadd  11115  algcvg  11625  cnco  12285  cnptopco  12286  lmtopcnp  12314  cnmpt11  12347  cnmpt21  12355  comet  12563  cnmet  12594  cncfco  12642  limccnpcntop  12687  dvcoapbr  12714  dvcjbr  12715  dvcj  12716
  Copyright terms: Public domain W3C validator