Step | Hyp | Ref
| Expression |
1 | | ltsonq 7339 |
. . . 4
⊢
<Q Or Q |
2 | | ltrelnq 7306 |
. . . 4
⊢
<Q ⊆ (Q ×
Q) |
3 | 1, 2 | son2lpi 5000 |
. . 3
⊢ ¬
(𝑆
<Q (𝐹‘𝐽) ∧ (𝐹‘𝐽) <Q 𝑆) |
4 | | simprl 521 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐾 <N 𝐽) ∧ ((𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑆)) → (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q (𝐹‘𝐾)) |
5 | | caucvgpr.cau |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N
𝑘 → ((𝐹‘𝑛) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑛) +Q
(*Q‘[〈𝑛, 1o〉]
~Q ))))) |
6 | | breq1 3985 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 𝑎 → (𝑛 <N 𝑘 ↔ 𝑎 <N 𝑘)) |
7 | | fveq2 5486 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑎 → (𝐹‘𝑛) = (𝐹‘𝑎)) |
8 | | opeq1 3758 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = 𝑎 → 〈𝑛, 1o〉 = 〈𝑎,
1o〉) |
9 | 8 | eceq1d 6537 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 𝑎 → [〈𝑛, 1o〉]
~Q = [〈𝑎, 1o〉]
~Q ) |
10 | 9 | fveq2d 5490 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑎 →
(*Q‘[〈𝑛, 1o〉]
~Q ) = (*Q‘[〈𝑎, 1o〉]
~Q )) |
11 | 10 | oveq2d 5858 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑎 → ((𝐹‘𝑘) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )) = ((𝐹‘𝑘) +Q
(*Q‘[〈𝑎, 1o〉]
~Q ))) |
12 | 7, 11 | breq12d 3995 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 𝑎 → ((𝐹‘𝑛) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )) ↔ (𝐹‘𝑎) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝑎, 1o〉]
~Q )))) |
13 | 7, 10 | oveq12d 5860 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑎 → ((𝐹‘𝑛) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )) = ((𝐹‘𝑎) +Q
(*Q‘[〈𝑎, 1o〉]
~Q ))) |
14 | 13 | breq2d 3994 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 𝑎 → ((𝐹‘𝑘) <Q ((𝐹‘𝑛) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )) ↔ (𝐹‘𝑘) <Q ((𝐹‘𝑎) +Q
(*Q‘[〈𝑎, 1o〉]
~Q )))) |
15 | 12, 14 | anbi12d 465 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 𝑎 → (((𝐹‘𝑛) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑛) +Q
(*Q‘[〈𝑛, 1o〉]
~Q ))) ↔ ((𝐹‘𝑎) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑎) +Q
(*Q‘[〈𝑎, 1o〉]
~Q ))))) |
16 | 6, 15 | imbi12d 233 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑎 → ((𝑛 <N 𝑘 → ((𝐹‘𝑛) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑛) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )))) ↔ (𝑎 <N 𝑘 → ((𝐹‘𝑎) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑎) +Q
(*Q‘[〈𝑎, 1o〉]
~Q )))))) |
17 | | breq2 3986 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑏 → (𝑎 <N 𝑘 ↔ 𝑎 <N 𝑏)) |
18 | | fveq2 5486 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑏 → (𝐹‘𝑘) = (𝐹‘𝑏)) |
19 | 18 | oveq1d 5857 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑏 → ((𝐹‘𝑘) +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) = ((𝐹‘𝑏) +Q
(*Q‘[〈𝑎, 1o〉]
~Q ))) |
20 | 19 | breq2d 3994 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑏 → ((𝐹‘𝑎) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) ↔ (𝐹‘𝑎) <Q ((𝐹‘𝑏) +Q
(*Q‘[〈𝑎, 1o〉]
~Q )))) |
21 | 18 | breq1d 3992 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑏 → ((𝐹‘𝑘) <Q ((𝐹‘𝑎) +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) ↔ (𝐹‘𝑏) <Q ((𝐹‘𝑎) +Q
(*Q‘[〈𝑎, 1o〉]
~Q )))) |
22 | 20, 21 | anbi12d 465 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑏 → (((𝐹‘𝑎) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑎) +Q
(*Q‘[〈𝑎, 1o〉]
~Q ))) ↔ ((𝐹‘𝑎) <Q ((𝐹‘𝑏) +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) ∧ (𝐹‘𝑏) <Q ((𝐹‘𝑎) +Q
(*Q‘[〈𝑎, 1o〉]
~Q ))))) |
23 | 17, 22 | imbi12d 233 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑏 → ((𝑎 <N 𝑘 → ((𝐹‘𝑎) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑎) +Q
(*Q‘[〈𝑎, 1o〉]
~Q )))) ↔ (𝑎 <N 𝑏 → ((𝐹‘𝑎) <Q ((𝐹‘𝑏) +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) ∧ (𝐹‘𝑏) <Q ((𝐹‘𝑎) +Q
(*Q‘[〈𝑎, 1o〉]
~Q )))))) |
24 | 16, 23 | cbvral2v 2705 |
. . . . . . . . . . . 12
⊢
(∀𝑛 ∈
N ∀𝑘
∈ N (𝑛
<N 𝑘 → ((𝐹‘𝑛) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑛) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )))) ↔ ∀𝑎 ∈ N ∀𝑏 ∈ N (𝑎 <N
𝑏 → ((𝐹‘𝑎) <Q ((𝐹‘𝑏) +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) ∧ (𝐹‘𝑏) <Q ((𝐹‘𝑎) +Q
(*Q‘[〈𝑎, 1o〉]
~Q ))))) |
25 | 5, 24 | sylib 121 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑎 ∈ N ∀𝑏 ∈ N (𝑎 <N
𝑏 → ((𝐹‘𝑎) <Q ((𝐹‘𝑏) +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) ∧ (𝐹‘𝑏) <Q ((𝐹‘𝑎) +Q
(*Q‘[〈𝑎, 1o〉]
~Q ))))) |
26 | | caucvgprlemnkj.k |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐾 ∈ N) |
27 | | caucvgprlemnkj.j |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐽 ∈ N) |
28 | | breq1 3985 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = 𝐾 → (𝑎 <N 𝑏 ↔ 𝐾 <N 𝑏)) |
29 | | fveq2 5486 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 = 𝐾 → (𝐹‘𝑎) = (𝐹‘𝐾)) |
30 | | opeq1 3758 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑎 = 𝐾 → 〈𝑎, 1o〉 = 〈𝐾,
1o〉) |
31 | 30 | eceq1d 6537 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑎 = 𝐾 → [〈𝑎, 1o〉]
~Q = [〈𝐾, 1o〉]
~Q ) |
32 | 31 | fveq2d 5490 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 = 𝐾 →
(*Q‘[〈𝑎, 1o〉]
~Q ) = (*Q‘[〈𝐾, 1o〉]
~Q )) |
33 | 32 | oveq2d 5858 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 = 𝐾 → ((𝐹‘𝑏) +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) = ((𝐹‘𝑏) +Q
(*Q‘[〈𝐾, 1o〉]
~Q ))) |
34 | 29, 33 | breq12d 3995 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 = 𝐾 → ((𝐹‘𝑎) <Q ((𝐹‘𝑏) +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) ↔ (𝐹‘𝐾) <Q ((𝐹‘𝑏) +Q
(*Q‘[〈𝐾, 1o〉]
~Q )))) |
35 | 29, 32 | oveq12d 5860 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 = 𝐾 → ((𝐹‘𝑎) +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) = ((𝐹‘𝐾) +Q
(*Q‘[〈𝐾, 1o〉]
~Q ))) |
36 | 35 | breq2d 3994 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 = 𝐾 → ((𝐹‘𝑏) <Q ((𝐹‘𝑎) +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) ↔ (𝐹‘𝑏) <Q ((𝐹‘𝐾) +Q
(*Q‘[〈𝐾, 1o〉]
~Q )))) |
37 | 34, 36 | anbi12d 465 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = 𝐾 → (((𝐹‘𝑎) <Q ((𝐹‘𝑏) +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) ∧ (𝐹‘𝑏) <Q ((𝐹‘𝑎) +Q
(*Q‘[〈𝑎, 1o〉]
~Q ))) ↔ ((𝐹‘𝐾) <Q ((𝐹‘𝑏) +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) ∧ (𝐹‘𝑏) <Q ((𝐹‘𝐾) +Q
(*Q‘[〈𝐾, 1o〉]
~Q ))))) |
38 | 28, 37 | imbi12d 233 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝐾 → ((𝑎 <N 𝑏 → ((𝐹‘𝑎) <Q ((𝐹‘𝑏) +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) ∧ (𝐹‘𝑏) <Q ((𝐹‘𝑎) +Q
(*Q‘[〈𝑎, 1o〉]
~Q )))) ↔ (𝐾 <N 𝑏 → ((𝐹‘𝐾) <Q ((𝐹‘𝑏) +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) ∧ (𝐹‘𝑏) <Q ((𝐹‘𝐾) +Q
(*Q‘[〈𝐾, 1o〉]
~Q )))))) |
39 | | breq2 3986 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = 𝐽 → (𝐾 <N 𝑏 ↔ 𝐾 <N 𝐽)) |
40 | | fveq2 5486 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 = 𝐽 → (𝐹‘𝑏) = (𝐹‘𝐽)) |
41 | 40 | oveq1d 5857 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 = 𝐽 → ((𝐹‘𝑏) +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) = ((𝐹‘𝐽) +Q
(*Q‘[〈𝐾, 1o〉]
~Q ))) |
42 | 41 | breq2d 3994 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 = 𝐽 → ((𝐹‘𝐾) <Q ((𝐹‘𝑏) +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) ↔ (𝐹‘𝐾) <Q ((𝐹‘𝐽) +Q
(*Q‘[〈𝐾, 1o〉]
~Q )))) |
43 | 40 | breq1d 3992 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 = 𝐽 → ((𝐹‘𝑏) <Q ((𝐹‘𝐾) +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) ↔ (𝐹‘𝐽) <Q ((𝐹‘𝐾) +Q
(*Q‘[〈𝐾, 1o〉]
~Q )))) |
44 | 42, 43 | anbi12d 465 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = 𝐽 → (((𝐹‘𝐾) <Q ((𝐹‘𝑏) +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) ∧ (𝐹‘𝑏) <Q ((𝐹‘𝐾) +Q
(*Q‘[〈𝐾, 1o〉]
~Q ))) ↔ ((𝐹‘𝐾) <Q ((𝐹‘𝐽) +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) ∧ (𝐹‘𝐽) <Q ((𝐹‘𝐾) +Q
(*Q‘[〈𝐾, 1o〉]
~Q ))))) |
45 | 39, 44 | imbi12d 233 |
. . . . . . . . . . . . 13
⊢ (𝑏 = 𝐽 → ((𝐾 <N 𝑏 → ((𝐹‘𝐾) <Q ((𝐹‘𝑏) +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) ∧ (𝐹‘𝑏) <Q ((𝐹‘𝐾) +Q
(*Q‘[〈𝐾, 1o〉]
~Q )))) ↔ (𝐾 <N 𝐽 → ((𝐹‘𝐾) <Q ((𝐹‘𝐽) +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) ∧ (𝐹‘𝐽) <Q ((𝐹‘𝐾) +Q
(*Q‘[〈𝐾, 1o〉]
~Q )))))) |
46 | 38, 45 | rspc2v 2843 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ N ∧
𝐽 ∈ N)
→ (∀𝑎 ∈
N ∀𝑏
∈ N (𝑎
<N 𝑏 → ((𝐹‘𝑎) <Q ((𝐹‘𝑏) +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) ∧ (𝐹‘𝑏) <Q ((𝐹‘𝑎) +Q
(*Q‘[〈𝑎, 1o〉]
~Q )))) → (𝐾 <N 𝐽 → ((𝐹‘𝐾) <Q ((𝐹‘𝐽) +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) ∧ (𝐹‘𝐽) <Q ((𝐹‘𝐾) +Q
(*Q‘[〈𝐾, 1o〉]
~Q )))))) |
47 | 26, 27, 46 | syl2anc 409 |
. . . . . . . . . . 11
⊢ (𝜑 → (∀𝑎 ∈ N
∀𝑏 ∈
N (𝑎
<N 𝑏 → ((𝐹‘𝑎) <Q ((𝐹‘𝑏) +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) ∧ (𝐹‘𝑏) <Q ((𝐹‘𝑎) +Q
(*Q‘[〈𝑎, 1o〉]
~Q )))) → (𝐾 <N 𝐽 → ((𝐹‘𝐾) <Q ((𝐹‘𝐽) +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) ∧ (𝐹‘𝐽) <Q ((𝐹‘𝐾) +Q
(*Q‘[〈𝐾, 1o〉]
~Q )))))) |
48 | 25, 47 | mpd 13 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐾 <N 𝐽 → ((𝐹‘𝐾) <Q ((𝐹‘𝐽) +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) ∧ (𝐹‘𝐽) <Q ((𝐹‘𝐾) +Q
(*Q‘[〈𝐾, 1o〉]
~Q ))))) |
49 | 48 | imp 123 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐾 <N 𝐽) → ((𝐹‘𝐾) <Q ((𝐹‘𝐽) +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) ∧ (𝐹‘𝐽) <Q ((𝐹‘𝐾) +Q
(*Q‘[〈𝐾, 1o〉]
~Q )))) |
50 | 49 | simpld 111 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐾 <N 𝐽) → (𝐹‘𝐾) <Q ((𝐹‘𝐽) +Q
(*Q‘[〈𝐾, 1o〉]
~Q ))) |
51 | 50 | adantr 274 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐾 <N 𝐽) ∧ ((𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑆)) → (𝐹‘𝐾) <Q ((𝐹‘𝐽) +Q
(*Q‘[〈𝐾, 1o〉]
~Q ))) |
52 | 1, 2 | sotri 4999 |
. . . . . . 7
⊢ (((𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q (𝐹‘𝐾) ∧ (𝐹‘𝐾) <Q ((𝐹‘𝐽) +Q
(*Q‘[〈𝐾, 1o〉]
~Q ))) → (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q ((𝐹‘𝐽) +Q
(*Q‘[〈𝐾, 1o〉]
~Q ))) |
53 | 4, 51, 52 | syl2anc 409 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐾 <N 𝐽) ∧ ((𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑆)) → (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q ((𝐹‘𝐽) +Q
(*Q‘[〈𝐾, 1o〉]
~Q ))) |
54 | | ltanqg 7341 |
. . . . . . . 8
⊢ ((𝑓 ∈ Q ∧
𝑔 ∈ Q
∧ ℎ ∈
Q) → (𝑓
<Q 𝑔 ↔ (ℎ +Q 𝑓) <Q
(ℎ
+Q 𝑔))) |
55 | 54 | adantl 275 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐾 <N 𝐽) ∧ ((𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑆)) ∧ (𝑓 ∈ Q ∧ 𝑔 ∈ Q ∧
ℎ ∈ Q))
→ (𝑓
<Q 𝑔 ↔ (ℎ +Q 𝑓) <Q
(ℎ
+Q 𝑔))) |
56 | | caucvgprlemnkj.s |
. . . . . . . 8
⊢ (𝜑 → 𝑆 ∈ Q) |
57 | 56 | ad2antrr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐾 <N 𝐽) ∧ ((𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑆)) → 𝑆 ∈ Q) |
58 | | caucvgpr.f |
. . . . . . . . 9
⊢ (𝜑 → 𝐹:N⟶Q) |
59 | 58, 27 | ffvelrnd 5621 |
. . . . . . . 8
⊢ (𝜑 → (𝐹‘𝐽) ∈ Q) |
60 | 59 | ad2antrr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐾 <N 𝐽) ∧ ((𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑆)) → (𝐹‘𝐽) ∈ Q) |
61 | | nnnq 7363 |
. . . . . . . . 9
⊢ (𝐾 ∈ N →
[〈𝐾,
1o〉] ~Q ∈
Q) |
62 | | recclnq 7333 |
. . . . . . . . 9
⊢
([〈𝐾,
1o〉] ~Q ∈ Q →
(*Q‘[〈𝐾, 1o〉]
~Q ) ∈ Q) |
63 | 26, 61, 62 | 3syl 17 |
. . . . . . . 8
⊢ (𝜑 →
(*Q‘[〈𝐾, 1o〉]
~Q ) ∈ Q) |
64 | 63 | ad2antrr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐾 <N 𝐽) ∧ ((𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑆)) →
(*Q‘[〈𝐾, 1o〉]
~Q ) ∈ Q) |
65 | | addcomnqg 7322 |
. . . . . . . 8
⊢ ((𝑓 ∈ Q ∧
𝑔 ∈ Q)
→ (𝑓
+Q 𝑔) = (𝑔 +Q 𝑓)) |
66 | 65 | adantl 275 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐾 <N 𝐽) ∧ ((𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑆)) ∧ (𝑓 ∈ Q ∧ 𝑔 ∈ Q)) →
(𝑓
+Q 𝑔) = (𝑔 +Q 𝑓)) |
67 | 55, 57, 60, 64, 66 | caovord2d 6011 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐾 <N 𝐽) ∧ ((𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑆)) → (𝑆 <Q (𝐹‘𝐽) ↔ (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q ((𝐹‘𝐽) +Q
(*Q‘[〈𝐾, 1o〉]
~Q )))) |
68 | 53, 67 | mpbird 166 |
. . . . 5
⊢ (((𝜑 ∧ 𝐾 <N 𝐽) ∧ ((𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑆)) → 𝑆 <Q (𝐹‘𝐽)) |
69 | | nnnq 7363 |
. . . . . . . . 9
⊢ (𝐽 ∈ N →
[〈𝐽,
1o〉] ~Q ∈
Q) |
70 | | recclnq 7333 |
. . . . . . . . 9
⊢
([〈𝐽,
1o〉] ~Q ∈ Q →
(*Q‘[〈𝐽, 1o〉]
~Q ) ∈ Q) |
71 | 27, 69, 70 | 3syl 17 |
. . . . . . . 8
⊢ (𝜑 →
(*Q‘[〈𝐽, 1o〉]
~Q ) ∈ Q) |
72 | 71 | ad2antrr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐾 <N 𝐽) ∧ ((𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑆)) →
(*Q‘[〈𝐽, 1o〉]
~Q ) ∈ Q) |
73 | | ltaddnq 7348 |
. . . . . . 7
⊢ (((𝐹‘𝐽) ∈ Q ∧
(*Q‘[〈𝐽, 1o〉]
~Q ) ∈ Q) → (𝐹‘𝐽) <Q ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))) |
74 | 60, 72, 73 | syl2anc 409 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐾 <N 𝐽) ∧ ((𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑆)) → (𝐹‘𝐽) <Q ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))) |
75 | | simprr 522 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐾 <N 𝐽) ∧ ((𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑆)) → ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑆) |
76 | 1, 2 | sotri 4999 |
. . . . . 6
⊢ (((𝐹‘𝐽) <Q ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) ∧ ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑆) → (𝐹‘𝐽) <Q 𝑆) |
77 | 74, 75, 76 | syl2anc 409 |
. . . . 5
⊢ (((𝜑 ∧ 𝐾 <N 𝐽) ∧ ((𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑆)) → (𝐹‘𝐽) <Q 𝑆) |
78 | 68, 77 | jca 304 |
. . . 4
⊢ (((𝜑 ∧ 𝐾 <N 𝐽) ∧ ((𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑆)) → (𝑆 <Q (𝐹‘𝐽) ∧ (𝐹‘𝐽) <Q 𝑆)) |
79 | 78 | ex 114 |
. . 3
⊢ ((𝜑 ∧ 𝐾 <N 𝐽) → (((𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑆) → (𝑆 <Q (𝐹‘𝐽) ∧ (𝐹‘𝐽) <Q 𝑆))) |
80 | 3, 79 | mtoi 654 |
. 2
⊢ ((𝜑 ∧ 𝐾 <N 𝐽) → ¬ ((𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑆)) |
81 | 1, 2 | son2lpi 5000 |
. . 3
⊢ ¬
(((𝑆
+Q (*Q‘[〈𝐽, 1o〉]
~Q )) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑆 ∧ 𝑆 <Q ((𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))) |
82 | | opeq1 3758 |
. . . . . . . . . . . 12
⊢ (𝐾 = 𝐽 → 〈𝐾, 1o〉 = 〈𝐽,
1o〉) |
83 | 82 | eceq1d 6537 |
. . . . . . . . . . 11
⊢ (𝐾 = 𝐽 → [〈𝐾, 1o〉]
~Q = [〈𝐽, 1o〉]
~Q ) |
84 | 83 | fveq2d 5490 |
. . . . . . . . . 10
⊢ (𝐾 = 𝐽 →
(*Q‘[〈𝐾, 1o〉]
~Q ) = (*Q‘[〈𝐽, 1o〉]
~Q )) |
85 | 84 | oveq2d 5858 |
. . . . . . . . 9
⊢ (𝐾 = 𝐽 → (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) = (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))) |
86 | | fveq2 5486 |
. . . . . . . . 9
⊢ (𝐾 = 𝐽 → (𝐹‘𝐾) = (𝐹‘𝐽)) |
87 | 85, 86 | breq12d 3995 |
. . . . . . . 8
⊢ (𝐾 = 𝐽 → ((𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q (𝐹‘𝐾) ↔ (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q (𝐹‘𝐽))) |
88 | 87 | anbi1d 461 |
. . . . . . 7
⊢ (𝐾 = 𝐽 → (((𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑆) ↔ ((𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q (𝐹‘𝐽) ∧ ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑆))) |
89 | 88 | adantl 275 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐾 = 𝐽) → (((𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑆) ↔ ((𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q (𝐹‘𝐽) ∧ ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑆))) |
90 | 54 | adantl 275 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓 ∈ Q ∧ 𝑔 ∈ Q ∧
ℎ ∈ Q))
→ (𝑓
<Q 𝑔 ↔ (ℎ +Q 𝑓) <Q
(ℎ
+Q 𝑔))) |
91 | | addclnq 7316 |
. . . . . . . . . 10
⊢ ((𝑆 ∈ Q ∧
(*Q‘[〈𝐽, 1o〉]
~Q ) ∈ Q) → (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) ∈ Q) |
92 | 56, 71, 91 | syl2anc 409 |
. . . . . . . . 9
⊢ (𝜑 → (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) ∈ Q) |
93 | 65 | adantl 275 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓 ∈ Q ∧ 𝑔 ∈ Q)) →
(𝑓
+Q 𝑔) = (𝑔 +Q 𝑓)) |
94 | 90, 92, 59, 71, 93 | caovord2d 6011 |
. . . . . . . 8
⊢ (𝜑 → ((𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q (𝐹‘𝐽) ↔ ((𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )))) |
95 | 94 | adantr 274 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐾 = 𝐽) → ((𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q (𝐹‘𝐽) ↔ ((𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )))) |
96 | 95 | anbi1d 461 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐾 = 𝐽) → (((𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q (𝐹‘𝐽) ∧ ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑆) ↔ (((𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) ∧ ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑆))) |
97 | 89, 96 | bitrd 187 |
. . . . 5
⊢ ((𝜑 ∧ 𝐾 = 𝐽) → (((𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑆) ↔ (((𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) ∧ ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑆))) |
98 | 1, 2 | sotri 4999 |
. . . . 5
⊢ ((((𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) ∧ ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑆) → ((𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑆) |
99 | 97, 98 | syl6bi 162 |
. . . 4
⊢ ((𝜑 ∧ 𝐾 = 𝐽) → (((𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑆) → ((𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑆)) |
100 | | ltaddnq 7348 |
. . . . . . 7
⊢ ((𝑆 ∈ Q ∧
(*Q‘[〈𝐽, 1o〉]
~Q ) ∈ Q) → 𝑆 <Q (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))) |
101 | 56, 71, 100 | syl2anc 409 |
. . . . . 6
⊢ (𝜑 → 𝑆 <Q (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))) |
102 | | ltaddnq 7348 |
. . . . . . 7
⊢ (((𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) ∈ Q ∧
(*Q‘[〈𝐽, 1o〉]
~Q ) ∈ Q) → (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q ((𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))) |
103 | 92, 71, 102 | syl2anc 409 |
. . . . . 6
⊢ (𝜑 → (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q ((𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))) |
104 | 1, 2 | sotri 4999 |
. . . . . 6
⊢ ((𝑆 <Q
(𝑆
+Q (*Q‘[〈𝐽, 1o〉]
~Q )) ∧ (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q ((𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))) → 𝑆 <Q ((𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))) |
105 | 101, 103,
104 | syl2anc 409 |
. . . . 5
⊢ (𝜑 → 𝑆 <Q ((𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))) |
106 | 105 | adantr 274 |
. . . 4
⊢ ((𝜑 ∧ 𝐾 = 𝐽) → 𝑆 <Q ((𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))) |
107 | 99, 106 | jctird 315 |
. . 3
⊢ ((𝜑 ∧ 𝐾 = 𝐽) → (((𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑆) → (((𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑆 ∧ 𝑆 <Q ((𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))))) |
108 | 81, 107 | mtoi 654 |
. 2
⊢ ((𝜑 ∧ 𝐾 = 𝐽) → ¬ ((𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑆)) |
109 | 1, 2 | son2lpi 5000 |
. . 3
⊢ ¬
(𝑆
<Q ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) ∧ ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑆) |
110 | 56 | ad2antrr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐽 <N 𝐾) ∧ ((𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑆)) → 𝑆 ∈ Q) |
111 | 63 | ad2antrr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐽 <N 𝐾) ∧ ((𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑆)) →
(*Q‘[〈𝐾, 1o〉]
~Q ) ∈ Q) |
112 | | ltaddnq 7348 |
. . . . . . 7
⊢ ((𝑆 ∈ Q ∧
(*Q‘[〈𝐾, 1o〉]
~Q ) ∈ Q) → 𝑆 <Q (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q ))) |
113 | 110, 111,
112 | syl2anc 409 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐽 <N 𝐾) ∧ ((𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑆)) → 𝑆 <Q (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q ))) |
114 | | simprl 521 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐽 <N 𝐾) ∧ ((𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑆)) → (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q (𝐹‘𝐾)) |
115 | | breq1 3985 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = 𝐽 → (𝑎 <N 𝑏 ↔ 𝐽 <N 𝑏)) |
116 | | fveq2 5486 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 = 𝐽 → (𝐹‘𝑎) = (𝐹‘𝐽)) |
117 | | opeq1 3758 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑎 = 𝐽 → 〈𝑎, 1o〉 = 〈𝐽,
1o〉) |
118 | 117 | eceq1d 6537 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑎 = 𝐽 → [〈𝑎, 1o〉]
~Q = [〈𝐽, 1o〉]
~Q ) |
119 | 118 | fveq2d 5490 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 = 𝐽 →
(*Q‘[〈𝑎, 1o〉]
~Q ) = (*Q‘[〈𝐽, 1o〉]
~Q )) |
120 | 119 | oveq2d 5858 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 = 𝐽 → ((𝐹‘𝑏) +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) = ((𝐹‘𝑏) +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))) |
121 | 116, 120 | breq12d 3995 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 = 𝐽 → ((𝐹‘𝑎) <Q ((𝐹‘𝑏) +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) ↔ (𝐹‘𝐽) <Q ((𝐹‘𝑏) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )))) |
122 | 116, 119 | oveq12d 5860 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 = 𝐽 → ((𝐹‘𝑎) +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) = ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))) |
123 | 122 | breq2d 3994 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 = 𝐽 → ((𝐹‘𝑏) <Q ((𝐹‘𝑎) +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) ↔ (𝐹‘𝑏) <Q ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )))) |
124 | 121, 123 | anbi12d 465 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = 𝐽 → (((𝐹‘𝑎) <Q ((𝐹‘𝑏) +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) ∧ (𝐹‘𝑏) <Q ((𝐹‘𝑎) +Q
(*Q‘[〈𝑎, 1o〉]
~Q ))) ↔ ((𝐹‘𝐽) <Q ((𝐹‘𝑏) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) ∧ (𝐹‘𝑏) <Q ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))))) |
125 | 115, 124 | imbi12d 233 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝐽 → ((𝑎 <N 𝑏 → ((𝐹‘𝑎) <Q ((𝐹‘𝑏) +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) ∧ (𝐹‘𝑏) <Q ((𝐹‘𝑎) +Q
(*Q‘[〈𝑎, 1o〉]
~Q )))) ↔ (𝐽 <N 𝑏 → ((𝐹‘𝐽) <Q ((𝐹‘𝑏) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) ∧ (𝐹‘𝑏) <Q ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )))))) |
126 | | breq2 3986 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = 𝐾 → (𝐽 <N 𝑏 ↔ 𝐽 <N 𝐾)) |
127 | | fveq2 5486 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 = 𝐾 → (𝐹‘𝑏) = (𝐹‘𝐾)) |
128 | 127 | oveq1d 5857 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 = 𝐾 → ((𝐹‘𝑏) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) = ((𝐹‘𝐾) +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))) |
129 | 128 | breq2d 3994 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 = 𝐾 → ((𝐹‘𝐽) <Q ((𝐹‘𝑏) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) ↔ (𝐹‘𝐽) <Q ((𝐹‘𝐾) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )))) |
130 | 127 | breq1d 3992 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 = 𝐾 → ((𝐹‘𝑏) <Q ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) ↔ (𝐹‘𝐾) <Q ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )))) |
131 | 129, 130 | anbi12d 465 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = 𝐾 → (((𝐹‘𝐽) <Q ((𝐹‘𝑏) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) ∧ (𝐹‘𝑏) <Q ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))) ↔ ((𝐹‘𝐽) <Q ((𝐹‘𝐾) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) ∧ (𝐹‘𝐾) <Q ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))))) |
132 | 126, 131 | imbi12d 233 |
. . . . . . . . . . . . 13
⊢ (𝑏 = 𝐾 → ((𝐽 <N 𝑏 → ((𝐹‘𝐽) <Q ((𝐹‘𝑏) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) ∧ (𝐹‘𝑏) <Q ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )))) ↔ (𝐽 <N 𝐾 → ((𝐹‘𝐽) <Q ((𝐹‘𝐾) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) ∧ (𝐹‘𝐾) <Q ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )))))) |
133 | 125, 132 | rspc2v 2843 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ N ∧
𝐾 ∈ N)
→ (∀𝑎 ∈
N ∀𝑏
∈ N (𝑎
<N 𝑏 → ((𝐹‘𝑎) <Q ((𝐹‘𝑏) +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) ∧ (𝐹‘𝑏) <Q ((𝐹‘𝑎) +Q
(*Q‘[〈𝑎, 1o〉]
~Q )))) → (𝐽 <N 𝐾 → ((𝐹‘𝐽) <Q ((𝐹‘𝐾) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) ∧ (𝐹‘𝐾) <Q ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )))))) |
134 | 27, 26, 133 | syl2anc 409 |
. . . . . . . . . . 11
⊢ (𝜑 → (∀𝑎 ∈ N
∀𝑏 ∈
N (𝑎
<N 𝑏 → ((𝐹‘𝑎) <Q ((𝐹‘𝑏) +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) ∧ (𝐹‘𝑏) <Q ((𝐹‘𝑎) +Q
(*Q‘[〈𝑎, 1o〉]
~Q )))) → (𝐽 <N 𝐾 → ((𝐹‘𝐽) <Q ((𝐹‘𝐾) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) ∧ (𝐹‘𝐾) <Q ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )))))) |
135 | 25, 134 | mpd 13 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐽 <N 𝐾 → ((𝐹‘𝐽) <Q ((𝐹‘𝐾) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) ∧ (𝐹‘𝐾) <Q ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))))) |
136 | 135 | imp 123 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐽 <N 𝐾) → ((𝐹‘𝐽) <Q ((𝐹‘𝐾) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) ∧ (𝐹‘𝐾) <Q ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )))) |
137 | 136 | simprd 113 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐽 <N 𝐾) → (𝐹‘𝐾) <Q ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))) |
138 | 137 | adantr 274 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐽 <N 𝐾) ∧ ((𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑆)) → (𝐹‘𝐾) <Q ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))) |
139 | 1, 2 | sotri 4999 |
. . . . . . 7
⊢ (((𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q (𝐹‘𝐾) ∧ (𝐹‘𝐾) <Q ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))) → (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))) |
140 | 114, 138,
139 | syl2anc 409 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐽 <N 𝐾) ∧ ((𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑆)) → (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))) |
141 | 1, 2 | sotri 4999 |
. . . . . 6
⊢ ((𝑆 <Q
(𝑆
+Q (*Q‘[〈𝐾, 1o〉]
~Q )) ∧ (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))) → 𝑆 <Q ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))) |
142 | 113, 140,
141 | syl2anc 409 |
. . . . 5
⊢ (((𝜑 ∧ 𝐽 <N 𝐾) ∧ ((𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑆)) → 𝑆 <Q ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))) |
143 | | simprr 522 |
. . . . 5
⊢ (((𝜑 ∧ 𝐽 <N 𝐾) ∧ ((𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑆)) → ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑆) |
144 | 142, 143 | jca 304 |
. . . 4
⊢ (((𝜑 ∧ 𝐽 <N 𝐾) ∧ ((𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑆)) → (𝑆 <Q ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) ∧ ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑆)) |
145 | 144 | ex 114 |
. . 3
⊢ ((𝜑 ∧ 𝐽 <N 𝐾) → (((𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑆) → (𝑆 <Q ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) ∧ ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑆))) |
146 | 109, 145 | mtoi 654 |
. 2
⊢ ((𝜑 ∧ 𝐽 <N 𝐾) → ¬ ((𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑆)) |
147 | | pitri3or 7263 |
. . 3
⊢ ((𝐾 ∈ N ∧
𝐽 ∈ N)
→ (𝐾
<N 𝐽 ∨ 𝐾 = 𝐽 ∨ 𝐽 <N 𝐾)) |
148 | 26, 27, 147 | syl2anc 409 |
. 2
⊢ (𝜑 → (𝐾 <N 𝐽 ∨ 𝐾 = 𝐽 ∨ 𝐽 <N 𝐾)) |
149 | 80, 108, 146, 148 | mpjao3dan 1297 |
1
⊢ (𝜑 → ¬ ((𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑆)) |