Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ordunisuc2r | GIF version |
Description: An ordinal which contains the successor of each of its members is equal to its union. (Contributed by Jim Kingdon, 14-Nov-2018.) |
Ref | Expression |
---|---|
ordunisuc2r | ⊢ (Ord 𝐴 → (∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴 → 𝐴 = ∪ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2738 | . . . . . . . . 9 ⊢ 𝑥 ∈ V | |
2 | 1 | sucid 4411 | . . . . . . . 8 ⊢ 𝑥 ∈ suc 𝑥 |
3 | elunii 3810 | . . . . . . . 8 ⊢ ((𝑥 ∈ suc 𝑥 ∧ suc 𝑥 ∈ 𝐴) → 𝑥 ∈ ∪ 𝐴) | |
4 | 2, 3 | mpan 424 | . . . . . . 7 ⊢ (suc 𝑥 ∈ 𝐴 → 𝑥 ∈ ∪ 𝐴) |
5 | 4 | imim2i 12 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝐴 → 𝑥 ∈ ∪ 𝐴)) |
6 | 5 | alimi 1453 | . . . . 5 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴) → ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ ∪ 𝐴)) |
7 | df-ral 2458 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴 ↔ ∀𝑥(𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)) | |
8 | dfss2 3142 | . . . . 5 ⊢ (𝐴 ⊆ ∪ 𝐴 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ ∪ 𝐴)) | |
9 | 6, 7, 8 | 3imtr4i 201 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴 → 𝐴 ⊆ ∪ 𝐴) |
10 | 9 | a1i 9 | . . 3 ⊢ (Ord 𝐴 → (∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴 → 𝐴 ⊆ ∪ 𝐴)) |
11 | orduniss 4419 | . . 3 ⊢ (Ord 𝐴 → ∪ 𝐴 ⊆ 𝐴) | |
12 | 10, 11 | jctird 317 | . 2 ⊢ (Ord 𝐴 → (∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴 → (𝐴 ⊆ ∪ 𝐴 ∧ ∪ 𝐴 ⊆ 𝐴))) |
13 | eqss 3168 | . 2 ⊢ (𝐴 = ∪ 𝐴 ↔ (𝐴 ⊆ ∪ 𝐴 ∧ ∪ 𝐴 ⊆ 𝐴)) | |
14 | 12, 13 | syl6ibr 162 | 1 ⊢ (Ord 𝐴 → (∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴 → 𝐴 = ∪ 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∀wal 1351 = wceq 1353 ∈ wcel 2146 ∀wral 2453 ⊆ wss 3127 ∪ cuni 3805 Ord word 4356 suc csuc 4359 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-sn 3595 df-uni 3806 df-tr 4097 df-iord 4360 df-suc 4365 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |