ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordunisuc2r GIF version

Theorem ordunisuc2r 4498
Description: An ordinal which contains the successor of each of its members is equal to its union. (Contributed by Jim Kingdon, 14-Nov-2018.)
Assertion
Ref Expression
ordunisuc2r (Ord 𝐴 → (∀𝑥𝐴 suc 𝑥𝐴𝐴 = 𝐴))
Distinct variable group:   𝑥,𝐴

Proof of Theorem ordunisuc2r
StepHypRef Expression
1 vex 2733 . . . . . . . . 9 𝑥 ∈ V
21sucid 4402 . . . . . . . 8 𝑥 ∈ suc 𝑥
3 elunii 3801 . . . . . . . 8 ((𝑥 ∈ suc 𝑥 ∧ suc 𝑥𝐴) → 𝑥 𝐴)
42, 3mpan 422 . . . . . . 7 (suc 𝑥𝐴𝑥 𝐴)
54imim2i 12 . . . . . 6 ((𝑥𝐴 → suc 𝑥𝐴) → (𝑥𝐴𝑥 𝐴))
65alimi 1448 . . . . 5 (∀𝑥(𝑥𝐴 → suc 𝑥𝐴) → ∀𝑥(𝑥𝐴𝑥 𝐴))
7 df-ral 2453 . . . . 5 (∀𝑥𝐴 suc 𝑥𝐴 ↔ ∀𝑥(𝑥𝐴 → suc 𝑥𝐴))
8 dfss2 3136 . . . . 5 (𝐴 𝐴 ↔ ∀𝑥(𝑥𝐴𝑥 𝐴))
96, 7, 83imtr4i 200 . . . 4 (∀𝑥𝐴 suc 𝑥𝐴𝐴 𝐴)
109a1i 9 . . 3 (Ord 𝐴 → (∀𝑥𝐴 suc 𝑥𝐴𝐴 𝐴))
11 orduniss 4410 . . 3 (Ord 𝐴 𝐴𝐴)
1210, 11jctird 315 . 2 (Ord 𝐴 → (∀𝑥𝐴 suc 𝑥𝐴 → (𝐴 𝐴 𝐴𝐴)))
13 eqss 3162 . 2 (𝐴 = 𝐴 ↔ (𝐴 𝐴 𝐴𝐴))
1412, 13syl6ibr 161 1 (Ord 𝐴 → (∀𝑥𝐴 suc 𝑥𝐴𝐴 = 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wal 1346   = wceq 1348  wcel 2141  wral 2448  wss 3121   cuni 3796  Ord word 4347  suc csuc 4350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-sn 3589  df-uni 3797  df-tr 4088  df-iord 4351  df-suc 4356
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator