| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordunisuc2r | GIF version | ||
| Description: An ordinal which contains the successor of each of its members is equal to its union. (Contributed by Jim Kingdon, 14-Nov-2018.) |
| Ref | Expression |
|---|---|
| ordunisuc2r | ⊢ (Ord 𝐴 → (∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴 → 𝐴 = ∪ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2776 | . . . . . . . . 9 ⊢ 𝑥 ∈ V | |
| 2 | 1 | sucid 4472 | . . . . . . . 8 ⊢ 𝑥 ∈ suc 𝑥 |
| 3 | elunii 3861 | . . . . . . . 8 ⊢ ((𝑥 ∈ suc 𝑥 ∧ suc 𝑥 ∈ 𝐴) → 𝑥 ∈ ∪ 𝐴) | |
| 4 | 2, 3 | mpan 424 | . . . . . . 7 ⊢ (suc 𝑥 ∈ 𝐴 → 𝑥 ∈ ∪ 𝐴) |
| 5 | 4 | imim2i 12 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝐴 → 𝑥 ∈ ∪ 𝐴)) |
| 6 | 5 | alimi 1479 | . . . . 5 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴) → ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ ∪ 𝐴)) |
| 7 | df-ral 2490 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴 ↔ ∀𝑥(𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)) | |
| 8 | ssalel 3185 | . . . . 5 ⊢ (𝐴 ⊆ ∪ 𝐴 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ ∪ 𝐴)) | |
| 9 | 6, 7, 8 | 3imtr4i 201 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴 → 𝐴 ⊆ ∪ 𝐴) |
| 10 | 9 | a1i 9 | . . 3 ⊢ (Ord 𝐴 → (∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴 → 𝐴 ⊆ ∪ 𝐴)) |
| 11 | orduniss 4480 | . . 3 ⊢ (Ord 𝐴 → ∪ 𝐴 ⊆ 𝐴) | |
| 12 | 10, 11 | jctird 317 | . 2 ⊢ (Ord 𝐴 → (∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴 → (𝐴 ⊆ ∪ 𝐴 ∧ ∪ 𝐴 ⊆ 𝐴))) |
| 13 | eqss 3212 | . 2 ⊢ (𝐴 = ∪ 𝐴 ↔ (𝐴 ⊆ ∪ 𝐴 ∧ ∪ 𝐴 ⊆ 𝐴)) | |
| 14 | 12, 13 | imbitrrdi 162 | 1 ⊢ (Ord 𝐴 → (∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴 → 𝐴 = ∪ 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∀wal 1371 = wceq 1373 ∈ wcel 2177 ∀wral 2485 ⊆ wss 3170 ∪ cuni 3856 Ord word 4417 suc csuc 4420 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-sn 3644 df-uni 3857 df-tr 4151 df-iord 4421 df-suc 4426 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |