ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cauappcvgprlemladdru GIF version

Theorem cauappcvgprlemladdru 7657
Description: Lemma for cauappcvgprlemladd 7659. The reverse subset relationship for the upper cut. (Contributed by Jim Kingdon, 11-Jul-2020.)
Hypotheses
Ref Expression
cauappcvgpr.f (𝜑𝐹:QQ)
cauappcvgpr.app (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))
cauappcvgpr.bnd (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))
cauappcvgpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩
cauappcvgprlemladd.s (𝜑𝑆Q)
Assertion
Ref Expression
cauappcvgprlemladdru (𝜑 → (2nd ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)}, {𝑢Q ∣ ∃𝑞Q (((𝐹𝑞) +Q 𝑞) +Q 𝑆) <Q 𝑢}⟩) ⊆ (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩)))
Distinct variable groups:   𝐴,𝑝   𝐿,𝑝,𝑞   𝜑,𝑝,𝑞   𝐹,𝑙,𝑢,𝑝,𝑞   𝑆,𝑙,𝑞,𝑢
Allowed substitution hints:   𝜑(𝑢,𝑙)   𝐴(𝑢,𝑞,𝑙)   𝑆(𝑝)   𝐿(𝑢,𝑙)

Proof of Theorem cauappcvgprlemladdru
Dummy variables 𝑓 𝑔 𝑟 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 4009 . . . . 5 (𝑢 = 𝑟 → ((((𝐹𝑞) +Q 𝑞) +Q 𝑆) <Q 𝑢 ↔ (((𝐹𝑞) +Q 𝑞) +Q 𝑆) <Q 𝑟))
21rexbidv 2478 . . . 4 (𝑢 = 𝑟 → (∃𝑞Q (((𝐹𝑞) +Q 𝑞) +Q 𝑆) <Q 𝑢 ↔ ∃𝑞Q (((𝐹𝑞) +Q 𝑞) +Q 𝑆) <Q 𝑟))
3 nqex 7364 . . . . . 6 Q ∈ V
43rabex 4149 . . . . 5 {𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)} ∈ V
53rabex 4149 . . . . 5 {𝑢Q ∣ ∃𝑞Q (((𝐹𝑞) +Q 𝑞) +Q 𝑆) <Q 𝑢} ∈ V
64, 5op2nd 6150 . . . 4 (2nd ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)}, {𝑢Q ∣ ∃𝑞Q (((𝐹𝑞) +Q 𝑞) +Q 𝑆) <Q 𝑢}⟩) = {𝑢Q ∣ ∃𝑞Q (((𝐹𝑞) +Q 𝑞) +Q 𝑆) <Q 𝑢}
72, 6elrab2 2898 . . 3 (𝑟 ∈ (2nd ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)}, {𝑢Q ∣ ∃𝑞Q (((𝐹𝑞) +Q 𝑞) +Q 𝑆) <Q 𝑢}⟩) ↔ (𝑟Q ∧ ∃𝑞Q (((𝐹𝑞) +Q 𝑞) +Q 𝑆) <Q 𝑟))
8 cauappcvgpr.f . . . . . . . . . . . . 13 (𝜑𝐹:QQ)
9 cauappcvgpr.app . . . . . . . . . . . . 13 (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))
10 cauappcvgpr.bnd . . . . . . . . . . . . 13 (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))
11 cauappcvgpr.lim . . . . . . . . . . . . 13 𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩
12 cauappcvgprlemladd.s . . . . . . . . . . . . 13 (𝜑𝑆Q)
138, 9, 10, 11, 12cauappcvgprlemladdfl 7656 . . . . . . . . . . . 12 (𝜑 → (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩)) ⊆ (1st ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)}, {𝑢Q ∣ ∃𝑞Q (((𝐹𝑞) +Q 𝑞) +Q 𝑆) <Q 𝑢}⟩))
14 oveq2 5885 . . . . . . . . . . . . . . . . . 18 (𝑞 = 𝑣 → (𝑙 +Q 𝑞) = (𝑙 +Q 𝑣))
15 fveq2 5517 . . . . . . . . . . . . . . . . . . 19 (𝑞 = 𝑣 → (𝐹𝑞) = (𝐹𝑣))
1615oveq1d 5892 . . . . . . . . . . . . . . . . . 18 (𝑞 = 𝑣 → ((𝐹𝑞) +Q 𝑆) = ((𝐹𝑣) +Q 𝑆))
1714, 16breq12d 4018 . . . . . . . . . . . . . . . . 17 (𝑞 = 𝑣 → ((𝑙 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆) ↔ (𝑙 +Q 𝑣) <Q ((𝐹𝑣) +Q 𝑆)))
1817cbvrexv 2706 . . . . . . . . . . . . . . . 16 (∃𝑞Q (𝑙 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆) ↔ ∃𝑣Q (𝑙 +Q 𝑣) <Q ((𝐹𝑣) +Q 𝑆))
1918a1i 9 . . . . . . . . . . . . . . 15 (𝑙Q → (∃𝑞Q (𝑙 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆) ↔ ∃𝑣Q (𝑙 +Q 𝑣) <Q ((𝐹𝑣) +Q 𝑆)))
2019rabbiia 2724 . . . . . . . . . . . . . 14 {𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)} = {𝑙Q ∣ ∃𝑣Q (𝑙 +Q 𝑣) <Q ((𝐹𝑣) +Q 𝑆)}
21 id 19 . . . . . . . . . . . . . . . . . . . 20 (𝑞 = 𝑣𝑞 = 𝑣)
2215, 21oveq12d 5895 . . . . . . . . . . . . . . . . . . 19 (𝑞 = 𝑣 → ((𝐹𝑞) +Q 𝑞) = ((𝐹𝑣) +Q 𝑣))
2322oveq1d 5892 . . . . . . . . . . . . . . . . . 18 (𝑞 = 𝑣 → (((𝐹𝑞) +Q 𝑞) +Q 𝑆) = (((𝐹𝑣) +Q 𝑣) +Q 𝑆))
2423breq1d 4015 . . . . . . . . . . . . . . . . 17 (𝑞 = 𝑣 → ((((𝐹𝑞) +Q 𝑞) +Q 𝑆) <Q 𝑢 ↔ (((𝐹𝑣) +Q 𝑣) +Q 𝑆) <Q 𝑢))
2524cbvrexv 2706 . . . . . . . . . . . . . . . 16 (∃𝑞Q (((𝐹𝑞) +Q 𝑞) +Q 𝑆) <Q 𝑢 ↔ ∃𝑣Q (((𝐹𝑣) +Q 𝑣) +Q 𝑆) <Q 𝑢)
2625a1i 9 . . . . . . . . . . . . . . 15 (𝑢Q → (∃𝑞Q (((𝐹𝑞) +Q 𝑞) +Q 𝑆) <Q 𝑢 ↔ ∃𝑣Q (((𝐹𝑣) +Q 𝑣) +Q 𝑆) <Q 𝑢))
2726rabbiia 2724 . . . . . . . . . . . . . 14 {𝑢Q ∣ ∃𝑞Q (((𝐹𝑞) +Q 𝑞) +Q 𝑆) <Q 𝑢} = {𝑢Q ∣ ∃𝑣Q (((𝐹𝑣) +Q 𝑣) +Q 𝑆) <Q 𝑢}
2820, 27opeq12i 3785 . . . . . . . . . . . . 13 ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)}, {𝑢Q ∣ ∃𝑞Q (((𝐹𝑞) +Q 𝑞) +Q 𝑆) <Q 𝑢}⟩ = ⟨{𝑙Q ∣ ∃𝑣Q (𝑙 +Q 𝑣) <Q ((𝐹𝑣) +Q 𝑆)}, {𝑢Q ∣ ∃𝑣Q (((𝐹𝑣) +Q 𝑣) +Q 𝑆) <Q 𝑢}⟩
2928fveq2i 5520 . . . . . . . . . . . 12 (1st ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)}, {𝑢Q ∣ ∃𝑞Q (((𝐹𝑞) +Q 𝑞) +Q 𝑆) <Q 𝑢}⟩) = (1st ‘⟨{𝑙Q ∣ ∃𝑣Q (𝑙 +Q 𝑣) <Q ((𝐹𝑣) +Q 𝑆)}, {𝑢Q ∣ ∃𝑣Q (((𝐹𝑣) +Q 𝑣) +Q 𝑆) <Q 𝑢}⟩)
3013, 29sseqtrdi 3205 . . . . . . . . . . 11 (𝜑 → (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩)) ⊆ (1st ‘⟨{𝑙Q ∣ ∃𝑣Q (𝑙 +Q 𝑣) <Q ((𝐹𝑣) +Q 𝑆)}, {𝑢Q ∣ ∃𝑣Q (((𝐹𝑣) +Q 𝑣) +Q 𝑆) <Q 𝑢}⟩))
3130adantr 276 . . . . . . . . . 10 ((𝜑𝑞Q) → (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩)) ⊆ (1st ‘⟨{𝑙Q ∣ ∃𝑣Q (𝑙 +Q 𝑣) <Q ((𝐹𝑣) +Q 𝑆)}, {𝑢Q ∣ ∃𝑣Q (((𝐹𝑣) +Q 𝑣) +Q 𝑆) <Q 𝑢}⟩))
328ad2antrr 488 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑞Q) ∧ 𝑣Q) → 𝐹:QQ)
33 simplr 528 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑞Q) ∧ 𝑣Q) → 𝑞Q)
3432, 33ffvelcdmd 5654 . . . . . . . . . . . . . . . . 17 (((𝜑𝑞Q) ∧ 𝑣Q) → (𝐹𝑞) ∈ Q)
35 simpr 110 . . . . . . . . . . . . . . . . 17 (((𝜑𝑞Q) ∧ 𝑣Q) → 𝑣Q)
36 addassnqg 7383 . . . . . . . . . . . . . . . . 17 (((𝐹𝑞) ∈ Q𝑞Q𝑣Q) → (((𝐹𝑞) +Q 𝑞) +Q 𝑣) = ((𝐹𝑞) +Q (𝑞 +Q 𝑣)))
3734, 33, 35, 36syl3anc 1238 . . . . . . . . . . . . . . . 16 (((𝜑𝑞Q) ∧ 𝑣Q) → (((𝐹𝑞) +Q 𝑞) +Q 𝑣) = ((𝐹𝑞) +Q (𝑞 +Q 𝑣)))
38 addclnq 7376 . . . . . . . . . . . . . . . . . 18 (((𝐹𝑞) ∈ Q𝑞Q) → ((𝐹𝑞) +Q 𝑞) ∈ Q)
3934, 33, 38syl2anc 411 . . . . . . . . . . . . . . . . 17 (((𝜑𝑞Q) ∧ 𝑣Q) → ((𝐹𝑞) +Q 𝑞) ∈ Q)
40 addclnq 7376 . . . . . . . . . . . . . . . . 17 ((((𝐹𝑞) +Q 𝑞) ∈ Q𝑣Q) → (((𝐹𝑞) +Q 𝑞) +Q 𝑣) ∈ Q)
4139, 40sylancom 420 . . . . . . . . . . . . . . . 16 (((𝜑𝑞Q) ∧ 𝑣Q) → (((𝐹𝑞) +Q 𝑞) +Q 𝑣) ∈ Q)
4237, 41eqeltrrd 2255 . . . . . . . . . . . . . . 15 (((𝜑𝑞Q) ∧ 𝑣Q) → ((𝐹𝑞) +Q (𝑞 +Q 𝑣)) ∈ Q)
4332, 35ffvelcdmd 5654 . . . . . . . . . . . . . . 15 (((𝜑𝑞Q) ∧ 𝑣Q) → (𝐹𝑣) ∈ Q)
44 ltsonq 7399 . . . . . . . . . . . . . . . 16 <Q Or Q
45 so2nr 4323 . . . . . . . . . . . . . . . 16 (( <Q Or Q ∧ (((𝐹𝑞) +Q (𝑞 +Q 𝑣)) ∈ Q ∧ (𝐹𝑣) ∈ Q)) → ¬ (((𝐹𝑞) +Q (𝑞 +Q 𝑣)) <Q (𝐹𝑣) ∧ (𝐹𝑣) <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑣))))
4644, 45mpan 424 . . . . . . . . . . . . . . 15 ((((𝐹𝑞) +Q (𝑞 +Q 𝑣)) ∈ Q ∧ (𝐹𝑣) ∈ Q) → ¬ (((𝐹𝑞) +Q (𝑞 +Q 𝑣)) <Q (𝐹𝑣) ∧ (𝐹𝑣) <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑣))))
4742, 43, 46syl2anc 411 . . . . . . . . . . . . . 14 (((𝜑𝑞Q) ∧ 𝑣Q) → ¬ (((𝐹𝑞) +Q (𝑞 +Q 𝑣)) <Q (𝐹𝑣) ∧ (𝐹𝑣) <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑣))))
4812ad2antrr 488 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑞Q) ∧ 𝑣Q) → 𝑆Q)
49 addcomnqg 7382 . . . . . . . . . . . . . . . . . . . 20 ((𝑓Q𝑔Q) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
5049adantl 277 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑞Q) ∧ 𝑣Q) ∧ (𝑓Q𝑔Q)) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
51 addassnqg 7383 . . . . . . . . . . . . . . . . . . . 20 ((𝑓Q𝑔QQ) → ((𝑓 +Q 𝑔) +Q ) = (𝑓 +Q (𝑔 +Q )))
5251adantl 277 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑞Q) ∧ 𝑣Q) ∧ (𝑓Q𝑔QQ)) → ((𝑓 +Q 𝑔) +Q ) = (𝑓 +Q (𝑔 +Q )))
5339, 48, 35, 50, 52caov32d 6057 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑞Q) ∧ 𝑣Q) → ((((𝐹𝑞) +Q 𝑞) +Q 𝑆) +Q 𝑣) = ((((𝐹𝑞) +Q 𝑞) +Q 𝑣) +Q 𝑆))
5453breq1d 4015 . . . . . . . . . . . . . . . . 17 (((𝜑𝑞Q) ∧ 𝑣Q) → (((((𝐹𝑞) +Q 𝑞) +Q 𝑆) +Q 𝑣) <Q ((𝐹𝑣) +Q 𝑆) ↔ ((((𝐹𝑞) +Q 𝑞) +Q 𝑣) +Q 𝑆) <Q ((𝐹𝑣) +Q 𝑆)))
55 ltanqg 7401 . . . . . . . . . . . . . . . . . . 19 ((𝑓Q𝑔QQ) → (𝑓 <Q 𝑔 ↔ ( +Q 𝑓) <Q ( +Q 𝑔)))
5655adantl 277 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑞Q) ∧ 𝑣Q) ∧ (𝑓Q𝑔QQ)) → (𝑓 <Q 𝑔 ↔ ( +Q 𝑓) <Q ( +Q 𝑔)))
5756, 41, 43, 48, 50caovord2d 6046 . . . . . . . . . . . . . . . . 17 (((𝜑𝑞Q) ∧ 𝑣Q) → ((((𝐹𝑞) +Q 𝑞) +Q 𝑣) <Q (𝐹𝑣) ↔ ((((𝐹𝑞) +Q 𝑞) +Q 𝑣) +Q 𝑆) <Q ((𝐹𝑣) +Q 𝑆)))
5837breq1d 4015 . . . . . . . . . . . . . . . . 17 (((𝜑𝑞Q) ∧ 𝑣Q) → ((((𝐹𝑞) +Q 𝑞) +Q 𝑣) <Q (𝐹𝑣) ↔ ((𝐹𝑞) +Q (𝑞 +Q 𝑣)) <Q (𝐹𝑣)))
5954, 57, 583bitr2d 216 . . . . . . . . . . . . . . . 16 (((𝜑𝑞Q) ∧ 𝑣Q) → (((((𝐹𝑞) +Q 𝑞) +Q 𝑆) +Q 𝑣) <Q ((𝐹𝑣) +Q 𝑆) ↔ ((𝐹𝑞) +Q (𝑞 +Q 𝑣)) <Q (𝐹𝑣)))
6059biimpd 144 . . . . . . . . . . . . . . 15 (((𝜑𝑞Q) ∧ 𝑣Q) → (((((𝐹𝑞) +Q 𝑞) +Q 𝑆) +Q 𝑣) <Q ((𝐹𝑣) +Q 𝑆) → ((𝐹𝑞) +Q (𝑞 +Q 𝑣)) <Q (𝐹𝑣)))
619ad2antrr 488 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑞Q) ∧ 𝑣Q) → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))
62 fveq2 5517 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑝 = 𝑣 → (𝐹𝑝) = (𝐹𝑣))
63 oveq1 5884 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑝 = 𝑣 → (𝑝 +Q 𝑞) = (𝑣 +Q 𝑞))
6463oveq2d 5893 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑝 = 𝑣 → ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) = ((𝐹𝑞) +Q (𝑣 +Q 𝑞)))
6562, 64breq12d 4018 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑝 = 𝑣 → ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ↔ (𝐹𝑣) <Q ((𝐹𝑞) +Q (𝑣 +Q 𝑞))))
6662, 63oveq12d 5895 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑝 = 𝑣 → ((𝐹𝑝) +Q (𝑝 +Q 𝑞)) = ((𝐹𝑣) +Q (𝑣 +Q 𝑞)))
6766breq2d 4017 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑝 = 𝑣 → ((𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞)) ↔ (𝐹𝑞) <Q ((𝐹𝑣) +Q (𝑣 +Q 𝑞))))
6865, 67anbi12d 473 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 = 𝑣 → (((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))) ↔ ((𝐹𝑣) <Q ((𝐹𝑞) +Q (𝑣 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑣) +Q (𝑣 +Q 𝑞)))))
6968ralbidv 2477 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 = 𝑣 → (∀𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))) ↔ ∀𝑞Q ((𝐹𝑣) <Q ((𝐹𝑞) +Q (𝑣 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑣) +Q (𝑣 +Q 𝑞)))))
7069rspcv 2839 . . . . . . . . . . . . . . . . . . . 20 (𝑣Q → (∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))) → ∀𝑞Q ((𝐹𝑣) <Q ((𝐹𝑞) +Q (𝑣 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑣) +Q (𝑣 +Q 𝑞)))))
7170adantl 277 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑞Q) ∧ 𝑣Q) → (∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))) → ∀𝑞Q ((𝐹𝑣) <Q ((𝐹𝑞) +Q (𝑣 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑣) +Q (𝑣 +Q 𝑞)))))
7261, 71mpd 13 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑞Q) ∧ 𝑣Q) → ∀𝑞Q ((𝐹𝑣) <Q ((𝐹𝑞) +Q (𝑣 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑣) +Q (𝑣 +Q 𝑞))))
73 rsp 2524 . . . . . . . . . . . . . . . . . 18 (∀𝑞Q ((𝐹𝑣) <Q ((𝐹𝑞) +Q (𝑣 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑣) +Q (𝑣 +Q 𝑞))) → (𝑞Q → ((𝐹𝑣) <Q ((𝐹𝑞) +Q (𝑣 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑣) +Q (𝑣 +Q 𝑞)))))
7472, 33, 73sylc 62 . . . . . . . . . . . . . . . . 17 (((𝜑𝑞Q) ∧ 𝑣Q) → ((𝐹𝑣) <Q ((𝐹𝑞) +Q (𝑣 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑣) +Q (𝑣 +Q 𝑞))))
7574simpld 112 . . . . . . . . . . . . . . . 16 (((𝜑𝑞Q) ∧ 𝑣Q) → (𝐹𝑣) <Q ((𝐹𝑞) +Q (𝑣 +Q 𝑞)))
76 addcomnqg 7382 . . . . . . . . . . . . . . . . . 18 ((𝑣Q𝑞Q) → (𝑣 +Q 𝑞) = (𝑞 +Q 𝑣))
7735, 33, 76syl2anc 411 . . . . . . . . . . . . . . . . 17 (((𝜑𝑞Q) ∧ 𝑣Q) → (𝑣 +Q 𝑞) = (𝑞 +Q 𝑣))
7877oveq2d 5893 . . . . . . . . . . . . . . . 16 (((𝜑𝑞Q) ∧ 𝑣Q) → ((𝐹𝑞) +Q (𝑣 +Q 𝑞)) = ((𝐹𝑞) +Q (𝑞 +Q 𝑣)))
7975, 78breqtrd 4031 . . . . . . . . . . . . . . 15 (((𝜑𝑞Q) ∧ 𝑣Q) → (𝐹𝑣) <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑣)))
8060, 79jctird 317 . . . . . . . . . . . . . 14 (((𝜑𝑞Q) ∧ 𝑣Q) → (((((𝐹𝑞) +Q 𝑞) +Q 𝑆) +Q 𝑣) <Q ((𝐹𝑣) +Q 𝑆) → (((𝐹𝑞) +Q (𝑞 +Q 𝑣)) <Q (𝐹𝑣) ∧ (𝐹𝑣) <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑣)))))
8147, 80mtod 663 . . . . . . . . . . . . 13 (((𝜑𝑞Q) ∧ 𝑣Q) → ¬ ((((𝐹𝑞) +Q 𝑞) +Q 𝑆) +Q 𝑣) <Q ((𝐹𝑣) +Q 𝑆))
8281nrexdv 2570 . . . . . . . . . . . 12 ((𝜑𝑞Q) → ¬ ∃𝑣Q ((((𝐹𝑞) +Q 𝑞) +Q 𝑆) +Q 𝑣) <Q ((𝐹𝑣) +Q 𝑆))
838ffvelcdmda 5653 . . . . . . . . . . . . . . 15 ((𝜑𝑞Q) → (𝐹𝑞) ∈ Q)
8483, 38sylancom 420 . . . . . . . . . . . . . 14 ((𝜑𝑞Q) → ((𝐹𝑞) +Q 𝑞) ∈ Q)
8512adantr 276 . . . . . . . . . . . . . 14 ((𝜑𝑞Q) → 𝑆Q)
86 addclnq 7376 . . . . . . . . . . . . . 14 ((((𝐹𝑞) +Q 𝑞) ∈ Q𝑆Q) → (((𝐹𝑞) +Q 𝑞) +Q 𝑆) ∈ Q)
8784, 85, 86syl2anc 411 . . . . . . . . . . . . 13 ((𝜑𝑞Q) → (((𝐹𝑞) +Q 𝑞) +Q 𝑆) ∈ Q)
88 oveq1 5884 . . . . . . . . . . . . . . . 16 (𝑙 = (((𝐹𝑞) +Q 𝑞) +Q 𝑆) → (𝑙 +Q 𝑣) = ((((𝐹𝑞) +Q 𝑞) +Q 𝑆) +Q 𝑣))
8988breq1d 4015 . . . . . . . . . . . . . . 15 (𝑙 = (((𝐹𝑞) +Q 𝑞) +Q 𝑆) → ((𝑙 +Q 𝑣) <Q ((𝐹𝑣) +Q 𝑆) ↔ ((((𝐹𝑞) +Q 𝑞) +Q 𝑆) +Q 𝑣) <Q ((𝐹𝑣) +Q 𝑆)))
9089rexbidv 2478 . . . . . . . . . . . . . 14 (𝑙 = (((𝐹𝑞) +Q 𝑞) +Q 𝑆) → (∃𝑣Q (𝑙 +Q 𝑣) <Q ((𝐹𝑣) +Q 𝑆) ↔ ∃𝑣Q ((((𝐹𝑞) +Q 𝑞) +Q 𝑆) +Q 𝑣) <Q ((𝐹𝑣) +Q 𝑆)))
9190elrab3 2896 . . . . . . . . . . . . 13 ((((𝐹𝑞) +Q 𝑞) +Q 𝑆) ∈ Q → ((((𝐹𝑞) +Q 𝑞) +Q 𝑆) ∈ {𝑙Q ∣ ∃𝑣Q (𝑙 +Q 𝑣) <Q ((𝐹𝑣) +Q 𝑆)} ↔ ∃𝑣Q ((((𝐹𝑞) +Q 𝑞) +Q 𝑆) +Q 𝑣) <Q ((𝐹𝑣) +Q 𝑆)))
9287, 91syl 14 . . . . . . . . . . . 12 ((𝜑𝑞Q) → ((((𝐹𝑞) +Q 𝑞) +Q 𝑆) ∈ {𝑙Q ∣ ∃𝑣Q (𝑙 +Q 𝑣) <Q ((𝐹𝑣) +Q 𝑆)} ↔ ∃𝑣Q ((((𝐹𝑞) +Q 𝑞) +Q 𝑆) +Q 𝑣) <Q ((𝐹𝑣) +Q 𝑆)))
9382, 92mtbird 673 . . . . . . . . . . 11 ((𝜑𝑞Q) → ¬ (((𝐹𝑞) +Q 𝑞) +Q 𝑆) ∈ {𝑙Q ∣ ∃𝑣Q (𝑙 +Q 𝑣) <Q ((𝐹𝑣) +Q 𝑆)})
943rabex 4149 . . . . . . . . . . . . 13 {𝑙Q ∣ ∃𝑣Q (𝑙 +Q 𝑣) <Q ((𝐹𝑣) +Q 𝑆)} ∈ V
953rabex 4149 . . . . . . . . . . . . 13 {𝑢Q ∣ ∃𝑣Q (((𝐹𝑣) +Q 𝑣) +Q 𝑆) <Q 𝑢} ∈ V
9694, 95op1st 6149 . . . . . . . . . . . 12 (1st ‘⟨{𝑙Q ∣ ∃𝑣Q (𝑙 +Q 𝑣) <Q ((𝐹𝑣) +Q 𝑆)}, {𝑢Q ∣ ∃𝑣Q (((𝐹𝑣) +Q 𝑣) +Q 𝑆) <Q 𝑢}⟩) = {𝑙Q ∣ ∃𝑣Q (𝑙 +Q 𝑣) <Q ((𝐹𝑣) +Q 𝑆)}
9796eleq2i 2244 . . . . . . . . . . 11 ((((𝐹𝑞) +Q 𝑞) +Q 𝑆) ∈ (1st ‘⟨{𝑙Q ∣ ∃𝑣Q (𝑙 +Q 𝑣) <Q ((𝐹𝑣) +Q 𝑆)}, {𝑢Q ∣ ∃𝑣Q (((𝐹𝑣) +Q 𝑣) +Q 𝑆) <Q 𝑢}⟩) ↔ (((𝐹𝑞) +Q 𝑞) +Q 𝑆) ∈ {𝑙Q ∣ ∃𝑣Q (𝑙 +Q 𝑣) <Q ((𝐹𝑣) +Q 𝑆)})
9893, 97sylnibr 677 . . . . . . . . . 10 ((𝜑𝑞Q) → ¬ (((𝐹𝑞) +Q 𝑞) +Q 𝑆) ∈ (1st ‘⟨{𝑙Q ∣ ∃𝑣Q (𝑙 +Q 𝑣) <Q ((𝐹𝑣) +Q 𝑆)}, {𝑢Q ∣ ∃𝑣Q (((𝐹𝑣) +Q 𝑣) +Q 𝑆) <Q 𝑢}⟩))
9931, 98ssneldd 3160 . . . . . . . . 9 ((𝜑𝑞Q) → ¬ (((𝐹𝑞) +Q 𝑞) +Q 𝑆) ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩)))
10099adantlr 477 . . . . . . . 8 (((𝜑𝑟Q) ∧ 𝑞Q) → ¬ (((𝐹𝑞) +Q 𝑞) +Q 𝑆) ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩)))
101100adantr 276 . . . . . . 7 ((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (((𝐹𝑞) +Q 𝑞) +Q 𝑆) <Q 𝑟) → ¬ (((𝐹𝑞) +Q 𝑞) +Q 𝑆) ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩)))
1028, 9, 10, 11cauappcvgprlemcl 7654 . . . . . . . . . . . . 13 (𝜑𝐿P)
103 nqprlu 7548 . . . . . . . . . . . . . 14 (𝑆Q → ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩ ∈ P)
10412, 103syl 14 . . . . . . . . . . . . 13 (𝜑 → ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩ ∈ P)
105 addclpr 7538 . . . . . . . . . . . . 13 ((𝐿P ∧ ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩ ∈ P) → (𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩) ∈ P)
106102, 104, 105syl2anc 411 . . . . . . . . . . . 12 (𝜑 → (𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩) ∈ P)
107 prop 7476 . . . . . . . . . . . 12 ((𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩) ∈ P → ⟨(1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩)), (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))⟩ ∈ P)
108106, 107syl 14 . . . . . . . . . . 11 (𝜑 → ⟨(1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩)), (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))⟩ ∈ P)
109 prloc 7492 . . . . . . . . . . 11 ((⟨(1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩)), (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))⟩ ∈ P ∧ (((𝐹𝑞) +Q 𝑞) +Q 𝑆) <Q 𝑟) → ((((𝐹𝑞) +Q 𝑞) +Q 𝑆) ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩)) ∨ 𝑟 ∈ (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))))
110108, 109sylan 283 . . . . . . . . . 10 ((𝜑 ∧ (((𝐹𝑞) +Q 𝑞) +Q 𝑆) <Q 𝑟) → ((((𝐹𝑞) +Q 𝑞) +Q 𝑆) ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩)) ∨ 𝑟 ∈ (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))))
111110adantlr 477 . . . . . . . . 9 (((𝜑𝑟Q) ∧ (((𝐹𝑞) +Q 𝑞) +Q 𝑆) <Q 𝑟) → ((((𝐹𝑞) +Q 𝑞) +Q 𝑆) ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩)) ∨ 𝑟 ∈ (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))))
112111adantlr 477 . . . . . . . 8 ((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (((𝐹𝑞) +Q 𝑞) +Q 𝑆) <Q 𝑟) → ((((𝐹𝑞) +Q 𝑞) +Q 𝑆) ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩)) ∨ 𝑟 ∈ (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))))
113112orcomd 729 . . . . . . 7 ((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (((𝐹𝑞) +Q 𝑞) +Q 𝑆) <Q 𝑟) → (𝑟 ∈ (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩)) ∨ (((𝐹𝑞) +Q 𝑞) +Q 𝑆) ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))))
114101, 113ecased 1349 . . . . . 6 ((((𝜑𝑟Q) ∧ 𝑞Q) ∧ (((𝐹𝑞) +Q 𝑞) +Q 𝑆) <Q 𝑟) → 𝑟 ∈ (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩)))
115114ex 115 . . . . 5 (((𝜑𝑟Q) ∧ 𝑞Q) → ((((𝐹𝑞) +Q 𝑞) +Q 𝑆) <Q 𝑟𝑟 ∈ (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))))
116115rexlimdva 2594 . . . 4 ((𝜑𝑟Q) → (∃𝑞Q (((𝐹𝑞) +Q 𝑞) +Q 𝑆) <Q 𝑟𝑟 ∈ (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))))
117116expimpd 363 . . 3 (𝜑 → ((𝑟Q ∧ ∃𝑞Q (((𝐹𝑞) +Q 𝑞) +Q 𝑆) <Q 𝑟) → 𝑟 ∈ (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))))
1187, 117biimtrid 152 . 2 (𝜑 → (𝑟 ∈ (2nd ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)}, {𝑢Q ∣ ∃𝑞Q (((𝐹𝑞) +Q 𝑞) +Q 𝑆) <Q 𝑢}⟩) → 𝑟 ∈ (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))))
119118ssrdv 3163 1 (𝜑 → (2nd ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)}, {𝑢Q ∣ ∃𝑞Q (((𝐹𝑞) +Q 𝑞) +Q 𝑆) <Q 𝑢}⟩) ⊆ (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 708  w3a 978   = wceq 1353  wcel 2148  {cab 2163  wral 2455  wrex 2456  {crab 2459  wss 3131  cop 3597   class class class wbr 4005   Or wor 4297  wf 5214  cfv 5218  (class class class)co 5877  1st c1st 6141  2nd c2nd 6142  Qcnq 7281   +Q cplq 7283   <Q cltq 7286  Pcnp 7292   +P cpp 7294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-eprel 4291  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-irdg 6373  df-1o 6419  df-2o 6420  df-oadd 6423  df-omul 6424  df-er 6537  df-ec 6539  df-qs 6543  df-ni 7305  df-pli 7306  df-mi 7307  df-lti 7308  df-plpq 7345  df-mpq 7346  df-enq 7348  df-nqqs 7349  df-plqqs 7350  df-mqqs 7351  df-1nqqs 7352  df-rq 7353  df-ltnqqs 7354  df-enq0 7425  df-nq0 7426  df-0nq0 7427  df-plq0 7428  df-mq0 7429  df-inp 7467  df-iplp 7469
This theorem is referenced by:  cauappcvgprlemladd  7659
  Copyright terms: Public domain W3C validator