ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  jctird Unicode version

Theorem jctird 315
Description: Deduction conjoining a theorem to right of consequent in an implication. (Contributed by NM, 21-Apr-2005.)
Hypotheses
Ref Expression
jctird.1  |-  ( ph  ->  ( ps  ->  ch ) )
jctird.2  |-  ( ph  ->  th )
Assertion
Ref Expression
jctird  |-  ( ph  ->  ( ps  ->  ( ch  /\  th ) ) )

Proof of Theorem jctird
StepHypRef Expression
1 jctird.1 . 2  |-  ( ph  ->  ( ps  ->  ch ) )
2 jctird.2 . . 3  |-  ( ph  ->  th )
32a1d 22 . 2  |-  ( ph  ->  ( ps  ->  th )
)
41, 3jcad 305 1  |-  ( ph  ->  ( ps  ->  ( ch  /\  th ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 107
This theorem is referenced by:  anc2ri  328  ordunisuc2r  4498  fnun  5304  fco  5363  fiintim  6906  cauappcvgprlemladdru  7618  cauappcvgprlemladdrl  7619  caucvgprlemnkj  7628  dvdsdivcl  11810  cnrest2  13030  cnptopresti  13032  bdxmet  13295  lgsdir  13730
  Copyright terms: Public domain W3C validator