ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reueq GIF version

Theorem reueq 2925
Description: Equality has existential uniqueness. (Contributed by Mario Carneiro, 1-Sep-2015.)
Assertion
Ref Expression
reueq (𝐵𝐴 ↔ ∃!𝑥𝐴 𝑥 = 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem reueq
StepHypRef Expression
1 risset 2494 . 2 (𝐵𝐴 ↔ ∃𝑥𝐴 𝑥 = 𝐵)
2 moeq 2901 . . . 4 ∃*𝑥 𝑥 = 𝐵
3 mormo 2677 . . . 4 (∃*𝑥 𝑥 = 𝐵 → ∃*𝑥𝐴 𝑥 = 𝐵)
42, 3ax-mp 5 . . 3 ∃*𝑥𝐴 𝑥 = 𝐵
5 reu5 2678 . . 3 (∃!𝑥𝐴 𝑥 = 𝐵 ↔ (∃𝑥𝐴 𝑥 = 𝐵 ∧ ∃*𝑥𝐴 𝑥 = 𝐵))
64, 5mpbiran2 931 . 2 (∃!𝑥𝐴 𝑥 = 𝐵 ↔ ∃𝑥𝐴 𝑥 = 𝐵)
71, 6bitr4i 186 1 (𝐵𝐴 ↔ ∃!𝑥𝐴 𝑥 = 𝐵)
Colors of variables: wff set class
Syntax hints:  wb 104   = wceq 1343  ∃*wmo 2015  wcel 2136  wrex 2445  ∃!wreu 2446  ∃*wrmo 2447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-rex 2450  df-reu 2451  df-rmo 2452  df-v 2728
This theorem is referenced by:  divfnzn  9559  icoshftf1o  9927
  Copyright terms: Public domain W3C validator