| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reueq | GIF version | ||
| Description: Equality has existential uniqueness. (Contributed by Mario Carneiro, 1-Sep-2015.) |
| Ref | Expression |
|---|---|
| reueq | ⊢ (𝐵 ∈ 𝐴 ↔ ∃!𝑥 ∈ 𝐴 𝑥 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | risset 2534 | . 2 ⊢ (𝐵 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 𝑥 = 𝐵) | |
| 2 | moeq 2948 | . . . 4 ⊢ ∃*𝑥 𝑥 = 𝐵 | |
| 3 | mormo 2722 | . . . 4 ⊢ (∃*𝑥 𝑥 = 𝐵 → ∃*𝑥 ∈ 𝐴 𝑥 = 𝐵) | |
| 4 | 2, 3 | ax-mp 5 | . . 3 ⊢ ∃*𝑥 ∈ 𝐴 𝑥 = 𝐵 |
| 5 | reu5 2723 | . . 3 ⊢ (∃!𝑥 ∈ 𝐴 𝑥 = 𝐵 ↔ (∃𝑥 ∈ 𝐴 𝑥 = 𝐵 ∧ ∃*𝑥 ∈ 𝐴 𝑥 = 𝐵)) | |
| 6 | 4, 5 | mpbiran2 944 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝑥 = 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑥 = 𝐵) |
| 7 | 1, 6 | bitr4i 187 | 1 ⊢ (𝐵 ∈ 𝐴 ↔ ∃!𝑥 ∈ 𝐴 𝑥 = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1373 ∃*wmo 2055 ∈ wcel 2176 ∃wrex 2485 ∃!wreu 2486 ∃*wrmo 2487 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-rex 2490 df-reu 2491 df-rmo 2492 df-v 2774 |
| This theorem is referenced by: divfnzn 9742 icoshftf1o 10113 |
| Copyright terms: Public domain | W3C validator |