Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > reueq | GIF version |
Description: Equality has existential uniqueness. (Contributed by Mario Carneiro, 1-Sep-2015.) |
Ref | Expression |
---|---|
reueq | ⊢ (𝐵 ∈ 𝐴 ↔ ∃!𝑥 ∈ 𝐴 𝑥 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | risset 2494 | . 2 ⊢ (𝐵 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 𝑥 = 𝐵) | |
2 | moeq 2901 | . . . 4 ⊢ ∃*𝑥 𝑥 = 𝐵 | |
3 | mormo 2677 | . . . 4 ⊢ (∃*𝑥 𝑥 = 𝐵 → ∃*𝑥 ∈ 𝐴 𝑥 = 𝐵) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ ∃*𝑥 ∈ 𝐴 𝑥 = 𝐵 |
5 | reu5 2678 | . . 3 ⊢ (∃!𝑥 ∈ 𝐴 𝑥 = 𝐵 ↔ (∃𝑥 ∈ 𝐴 𝑥 = 𝐵 ∧ ∃*𝑥 ∈ 𝐴 𝑥 = 𝐵)) | |
6 | 4, 5 | mpbiran2 931 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝑥 = 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑥 = 𝐵) |
7 | 1, 6 | bitr4i 186 | 1 ⊢ (𝐵 ∈ 𝐴 ↔ ∃!𝑥 ∈ 𝐴 𝑥 = 𝐵) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 = wceq 1343 ∃*wmo 2015 ∈ wcel 2136 ∃wrex 2445 ∃!wreu 2446 ∃*wrmo 2447 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-rex 2450 df-reu 2451 df-rmo 2452 df-v 2728 |
This theorem is referenced by: divfnzn 9559 icoshftf1o 9927 |
Copyright terms: Public domain | W3C validator |