| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > reueq | GIF version | ||
| Description: Equality has existential uniqueness. (Contributed by Mario Carneiro, 1-Sep-2015.) | 
| Ref | Expression | 
|---|---|
| reueq | ⊢ (𝐵 ∈ 𝐴 ↔ ∃!𝑥 ∈ 𝐴 𝑥 = 𝐵) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | risset 2525 | . 2 ⊢ (𝐵 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 𝑥 = 𝐵) | |
| 2 | moeq 2939 | . . . 4 ⊢ ∃*𝑥 𝑥 = 𝐵 | |
| 3 | mormo 2713 | . . . 4 ⊢ (∃*𝑥 𝑥 = 𝐵 → ∃*𝑥 ∈ 𝐴 𝑥 = 𝐵) | |
| 4 | 2, 3 | ax-mp 5 | . . 3 ⊢ ∃*𝑥 ∈ 𝐴 𝑥 = 𝐵 | 
| 5 | reu5 2714 | . . 3 ⊢ (∃!𝑥 ∈ 𝐴 𝑥 = 𝐵 ↔ (∃𝑥 ∈ 𝐴 𝑥 = 𝐵 ∧ ∃*𝑥 ∈ 𝐴 𝑥 = 𝐵)) | |
| 6 | 4, 5 | mpbiran2 943 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝑥 = 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑥 = 𝐵) | 
| 7 | 1, 6 | bitr4i 187 | 1 ⊢ (𝐵 ∈ 𝐴 ↔ ∃!𝑥 ∈ 𝐴 𝑥 = 𝐵) | 
| Colors of variables: wff set class | 
| Syntax hints: ↔ wb 105 = wceq 1364 ∃*wmo 2046 ∈ wcel 2167 ∃wrex 2476 ∃!wreu 2477 ∃*wrmo 2478 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-rex 2481 df-reu 2482 df-rmo 2483 df-v 2765 | 
| This theorem is referenced by: divfnzn 9695 icoshftf1o 10066 | 
| Copyright terms: Public domain | W3C validator |