ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fisseneq GIF version

Theorem fisseneq 6909
Description: A finite set is equal to its subset if they are equinumerous. (Contributed by FL, 11-Aug-2008.)
Assertion
Ref Expression
fisseneq ((𝐵 ∈ Fin ∧ 𝐴𝐵𝐴𝐵) → 𝐴 = 𝐵)

Proof of Theorem fisseneq
Dummy variables 𝑤 𝑥 𝑦 𝑧 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 enfii 6852 . . . 4 ((𝐵 ∈ Fin ∧ 𝐴𝐵) → 𝐴 ∈ Fin)
213adant2 1011 . . 3 ((𝐵 ∈ Fin ∧ 𝐴𝐵𝐴𝐵) → 𝐴 ∈ Fin)
3 sseq1 3170 . . . . . . 7 (𝑤 = ∅ → (𝑤𝑥 ↔ ∅ ⊆ 𝑥))
4 breq1 3992 . . . . . . 7 (𝑤 = ∅ → (𝑤𝑥 ↔ ∅ ≈ 𝑥))
53, 4anbi12d 470 . . . . . 6 (𝑤 = ∅ → ((𝑤𝑥𝑤𝑥) ↔ (∅ ⊆ 𝑥 ∧ ∅ ≈ 𝑥)))
6 eqeq1 2177 . . . . . 6 (𝑤 = ∅ → (𝑤 = 𝑥 ↔ ∅ = 𝑥))
75, 6imbi12d 233 . . . . 5 (𝑤 = ∅ → (((𝑤𝑥𝑤𝑥) → 𝑤 = 𝑥) ↔ ((∅ ⊆ 𝑥 ∧ ∅ ≈ 𝑥) → ∅ = 𝑥)))
87albidv 1817 . . . 4 (𝑤 = ∅ → (∀𝑥((𝑤𝑥𝑤𝑥) → 𝑤 = 𝑥) ↔ ∀𝑥((∅ ⊆ 𝑥 ∧ ∅ ≈ 𝑥) → ∅ = 𝑥)))
9 sseq1 3170 . . . . . . 7 (𝑤 = 𝑦 → (𝑤𝑥𝑦𝑥))
10 breq1 3992 . . . . . . 7 (𝑤 = 𝑦 → (𝑤𝑥𝑦𝑥))
119, 10anbi12d 470 . . . . . 6 (𝑤 = 𝑦 → ((𝑤𝑥𝑤𝑥) ↔ (𝑦𝑥𝑦𝑥)))
12 eqeq1 2177 . . . . . 6 (𝑤 = 𝑦 → (𝑤 = 𝑥𝑦 = 𝑥))
1311, 12imbi12d 233 . . . . 5 (𝑤 = 𝑦 → (((𝑤𝑥𝑤𝑥) → 𝑤 = 𝑥) ↔ ((𝑦𝑥𝑦𝑥) → 𝑦 = 𝑥)))
1413albidv 1817 . . . 4 (𝑤 = 𝑦 → (∀𝑥((𝑤𝑥𝑤𝑥) → 𝑤 = 𝑥) ↔ ∀𝑥((𝑦𝑥𝑦𝑥) → 𝑦 = 𝑥)))
15 sseq1 3170 . . . . . . 7 (𝑤 = (𝑦 ∪ {𝑧}) → (𝑤𝑥 ↔ (𝑦 ∪ {𝑧}) ⊆ 𝑥))
16 breq1 3992 . . . . . . 7 (𝑤 = (𝑦 ∪ {𝑧}) → (𝑤𝑥 ↔ (𝑦 ∪ {𝑧}) ≈ 𝑥))
1715, 16anbi12d 470 . . . . . 6 (𝑤 = (𝑦 ∪ {𝑧}) → ((𝑤𝑥𝑤𝑥) ↔ ((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥)))
18 eqeq1 2177 . . . . . 6 (𝑤 = (𝑦 ∪ {𝑧}) → (𝑤 = 𝑥 ↔ (𝑦 ∪ {𝑧}) = 𝑥))
1917, 18imbi12d 233 . . . . 5 (𝑤 = (𝑦 ∪ {𝑧}) → (((𝑤𝑥𝑤𝑥) → 𝑤 = 𝑥) ↔ (((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥) → (𝑦 ∪ {𝑧}) = 𝑥)))
2019albidv 1817 . . . 4 (𝑤 = (𝑦 ∪ {𝑧}) → (∀𝑥((𝑤𝑥𝑤𝑥) → 𝑤 = 𝑥) ↔ ∀𝑥(((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥) → (𝑦 ∪ {𝑧}) = 𝑥)))
21 sseq1 3170 . . . . . . 7 (𝑤 = 𝐴 → (𝑤𝑥𝐴𝑥))
22 breq1 3992 . . . . . . 7 (𝑤 = 𝐴 → (𝑤𝑥𝐴𝑥))
2321, 22anbi12d 470 . . . . . 6 (𝑤 = 𝐴 → ((𝑤𝑥𝑤𝑥) ↔ (𝐴𝑥𝐴𝑥)))
24 eqeq1 2177 . . . . . 6 (𝑤 = 𝐴 → (𝑤 = 𝑥𝐴 = 𝑥))
2523, 24imbi12d 233 . . . . 5 (𝑤 = 𝐴 → (((𝑤𝑥𝑤𝑥) → 𝑤 = 𝑥) ↔ ((𝐴𝑥𝐴𝑥) → 𝐴 = 𝑥)))
2625albidv 1817 . . . 4 (𝑤 = 𝐴 → (∀𝑥((𝑤𝑥𝑤𝑥) → 𝑤 = 𝑥) ↔ ∀𝑥((𝐴𝑥𝐴𝑥) → 𝐴 = 𝑥)))
27 ensym 6759 . . . . . . . 8 (∅ ≈ 𝑥𝑥 ≈ ∅)
28 en0 6773 . . . . . . . 8 (𝑥 ≈ ∅ ↔ 𝑥 = ∅)
2927, 28sylib 121 . . . . . . 7 (∅ ≈ 𝑥𝑥 = ∅)
3029eqcomd 2176 . . . . . 6 (∅ ≈ 𝑥 → ∅ = 𝑥)
3130adantl 275 . . . . 5 ((∅ ⊆ 𝑥 ∧ ∅ ≈ 𝑥) → ∅ = 𝑥)
3231ax-gen 1442 . . . 4 𝑥((∅ ⊆ 𝑥 ∧ ∅ ≈ 𝑥) → ∅ = 𝑥)
33 sseq2 3171 . . . . . . . 8 (𝑥 = 𝑎 → (𝑦𝑥𝑦𝑎))
34 breq2 3993 . . . . . . . 8 (𝑥 = 𝑎 → (𝑦𝑥𝑦𝑎))
3533, 34anbi12d 470 . . . . . . 7 (𝑥 = 𝑎 → ((𝑦𝑥𝑦𝑥) ↔ (𝑦𝑎𝑦𝑎)))
36 eqeq2 2180 . . . . . . 7 (𝑥 = 𝑎 → (𝑦 = 𝑥𝑦 = 𝑎))
3735, 36imbi12d 233 . . . . . 6 (𝑥 = 𝑎 → (((𝑦𝑥𝑦𝑥) → 𝑦 = 𝑥) ↔ ((𝑦𝑎𝑦𝑎) → 𝑦 = 𝑎)))
3837cbvalv 1910 . . . . 5 (∀𝑥((𝑦𝑥𝑦𝑥) → 𝑦 = 𝑥) ↔ ∀𝑎((𝑦𝑎𝑦𝑎) → 𝑦 = 𝑎))
39 simplr 525 . . . . . . . . . . 11 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ∀𝑎((𝑦𝑎𝑦𝑎) → 𝑦 = 𝑎)) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥)) → ∀𝑎((𝑦𝑎𝑦𝑎) → 𝑦 = 𝑎))
40 difun2 3494 . . . . . . . . . . . . . 14 ((𝑦 ∪ {𝑧}) ∖ {𝑧}) = (𝑦 ∖ {𝑧})
41 difsn 3717 . . . . . . . . . . . . . . 15 𝑧𝑦 → (𝑦 ∖ {𝑧}) = 𝑦)
4241ad3antlr 490 . . . . . . . . . . . . . 14 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ∀𝑎((𝑦𝑎𝑦𝑎) → 𝑦 = 𝑎)) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥)) → (𝑦 ∖ {𝑧}) = 𝑦)
4340, 42eqtrid 2215 . . . . . . . . . . . . 13 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ∀𝑎((𝑦𝑎𝑦𝑎) → 𝑦 = 𝑎)) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥)) → ((𝑦 ∪ {𝑧}) ∖ {𝑧}) = 𝑦)
44 simprl 526 . . . . . . . . . . . . . 14 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ∀𝑎((𝑦𝑎𝑦𝑎) → 𝑦 = 𝑎)) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥)) → (𝑦 ∪ {𝑧}) ⊆ 𝑥)
4544ssdifd 3263 . . . . . . . . . . . . 13 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ∀𝑎((𝑦𝑎𝑦𝑎) → 𝑦 = 𝑎)) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥)) → ((𝑦 ∪ {𝑧}) ∖ {𝑧}) ⊆ (𝑥 ∖ {𝑧}))
4643, 45eqsstrrd 3184 . . . . . . . . . . . 12 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ∀𝑎((𝑦𝑎𝑦𝑎) → 𝑦 = 𝑎)) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥)) → 𝑦 ⊆ (𝑥 ∖ {𝑧}))
47 simplll 528 . . . . . . . . . . . . . . 15 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ∀𝑎((𝑦𝑎𝑦𝑎) → 𝑦 = 𝑎)) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥)) → 𝑦 ∈ Fin)
48 vex 2733 . . . . . . . . . . . . . . . 16 𝑧 ∈ V
4948a1i 9 . . . . . . . . . . . . . . 15 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ∀𝑎((𝑦𝑎𝑦𝑎) → 𝑦 = 𝑎)) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥)) → 𝑧 ∈ V)
50 simpllr 529 . . . . . . . . . . . . . . 15 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ∀𝑎((𝑦𝑎𝑦𝑎) → 𝑦 = 𝑎)) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥)) → ¬ 𝑧𝑦)
51 unsnfi 6896 . . . . . . . . . . . . . . 15 ((𝑦 ∈ Fin ∧ 𝑧 ∈ V ∧ ¬ 𝑧𝑦) → (𝑦 ∪ {𝑧}) ∈ Fin)
5247, 49, 50, 51syl3anc 1233 . . . . . . . . . . . . . 14 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ∀𝑎((𝑦𝑎𝑦𝑎) → 𝑦 = 𝑎)) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥)) → (𝑦 ∪ {𝑧}) ∈ Fin)
53 simprr 527 . . . . . . . . . . . . . 14 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ∀𝑎((𝑦𝑎𝑦𝑎) → 𝑦 = 𝑎)) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥)) → (𝑦 ∪ {𝑧}) ≈ 𝑥)
54 vsnid 3615 . . . . . . . . . . . . . . . 16 𝑧 ∈ {𝑧}
55 elun2 3295 . . . . . . . . . . . . . . . 16 (𝑧 ∈ {𝑧} → 𝑧 ∈ (𝑦 ∪ {𝑧}))
5654, 55ax-mp 5 . . . . . . . . . . . . . . 15 𝑧 ∈ (𝑦 ∪ {𝑧})
5756a1i 9 . . . . . . . . . . . . . 14 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ∀𝑎((𝑦𝑎𝑦𝑎) → 𝑦 = 𝑎)) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥)) → 𝑧 ∈ (𝑦 ∪ {𝑧}))
5844, 57sseldd 3148 . . . . . . . . . . . . . 14 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ∀𝑎((𝑦𝑎𝑦𝑎) → 𝑦 = 𝑎)) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥)) → 𝑧𝑥)
5952, 53, 57, 58dif1enen 6858 . . . . . . . . . . . . 13 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ∀𝑎((𝑦𝑎𝑦𝑎) → 𝑦 = 𝑎)) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥)) → ((𝑦 ∪ {𝑧}) ∖ {𝑧}) ≈ (𝑥 ∖ {𝑧}))
6043, 59eqbrtrrd 4013 . . . . . . . . . . . 12 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ∀𝑎((𝑦𝑎𝑦𝑎) → 𝑦 = 𝑎)) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥)) → 𝑦 ≈ (𝑥 ∖ {𝑧}))
6146, 60jca 304 . . . . . . . . . . 11 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ∀𝑎((𝑦𝑎𝑦𝑎) → 𝑦 = 𝑎)) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥)) → (𝑦 ⊆ (𝑥 ∖ {𝑧}) ∧ 𝑦 ≈ (𝑥 ∖ {𝑧})))
62 vex 2733 . . . . . . . . . . . . 13 𝑥 ∈ V
63 difexg 4130 . . . . . . . . . . . . 13 (𝑥 ∈ V → (𝑥 ∖ {𝑧}) ∈ V)
6462, 63ax-mp 5 . . . . . . . . . . . 12 (𝑥 ∖ {𝑧}) ∈ V
65 sseq2 3171 . . . . . . . . . . . . . 14 (𝑎 = (𝑥 ∖ {𝑧}) → (𝑦𝑎𝑦 ⊆ (𝑥 ∖ {𝑧})))
66 breq2 3993 . . . . . . . . . . . . . 14 (𝑎 = (𝑥 ∖ {𝑧}) → (𝑦𝑎𝑦 ≈ (𝑥 ∖ {𝑧})))
6765, 66anbi12d 470 . . . . . . . . . . . . 13 (𝑎 = (𝑥 ∖ {𝑧}) → ((𝑦𝑎𝑦𝑎) ↔ (𝑦 ⊆ (𝑥 ∖ {𝑧}) ∧ 𝑦 ≈ (𝑥 ∖ {𝑧}))))
68 eqeq2 2180 . . . . . . . . . . . . 13 (𝑎 = (𝑥 ∖ {𝑧}) → (𝑦 = 𝑎𝑦 = (𝑥 ∖ {𝑧})))
6967, 68imbi12d 233 . . . . . . . . . . . 12 (𝑎 = (𝑥 ∖ {𝑧}) → (((𝑦𝑎𝑦𝑎) → 𝑦 = 𝑎) ↔ ((𝑦 ⊆ (𝑥 ∖ {𝑧}) ∧ 𝑦 ≈ (𝑥 ∖ {𝑧})) → 𝑦 = (𝑥 ∖ {𝑧}))))
7064, 69spcv 2824 . . . . . . . . . . 11 (∀𝑎((𝑦𝑎𝑦𝑎) → 𝑦 = 𝑎) → ((𝑦 ⊆ (𝑥 ∖ {𝑧}) ∧ 𝑦 ≈ (𝑥 ∖ {𝑧})) → 𝑦 = (𝑥 ∖ {𝑧})))
7139, 61, 70sylc 62 . . . . . . . . . 10 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ∀𝑎((𝑦𝑎𝑦𝑎) → 𝑦 = 𝑎)) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥)) → 𝑦 = (𝑥 ∖ {𝑧}))
7271uneq1d 3280 . . . . . . . . 9 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ∀𝑎((𝑦𝑎𝑦𝑎) → 𝑦 = 𝑎)) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥)) → (𝑦 ∪ {𝑧}) = ((𝑥 ∖ {𝑧}) ∪ {𝑧}))
7353ensymd 6761 . . . . . . . . . . 11 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ∀𝑎((𝑦𝑎𝑦𝑎) → 𝑦 = 𝑎)) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥)) → 𝑥 ≈ (𝑦 ∪ {𝑧}))
74 enfii 6852 . . . . . . . . . . 11 (((𝑦 ∪ {𝑧}) ∈ Fin ∧ 𝑥 ≈ (𝑦 ∪ {𝑧})) → 𝑥 ∈ Fin)
7552, 73, 74syl2anc 409 . . . . . . . . . 10 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ∀𝑎((𝑦𝑎𝑦𝑎) → 𝑦 = 𝑎)) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥)) → 𝑥 ∈ Fin)
76 fidifsnid 6849 . . . . . . . . . 10 ((𝑥 ∈ Fin ∧ 𝑧𝑥) → ((𝑥 ∖ {𝑧}) ∪ {𝑧}) = 𝑥)
7775, 58, 76syl2anc 409 . . . . . . . . 9 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ∀𝑎((𝑦𝑎𝑦𝑎) → 𝑦 = 𝑎)) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥)) → ((𝑥 ∖ {𝑧}) ∪ {𝑧}) = 𝑥)
7872, 77eqtrd 2203 . . . . . . . 8 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ∀𝑎((𝑦𝑎𝑦𝑎) → 𝑦 = 𝑎)) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥)) → (𝑦 ∪ {𝑧}) = 𝑥)
7978ex 114 . . . . . . 7 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ∀𝑎((𝑦𝑎𝑦𝑎) → 𝑦 = 𝑎)) → (((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥) → (𝑦 ∪ {𝑧}) = 𝑥))
8079alrimiv 1867 . . . . . 6 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ∀𝑎((𝑦𝑎𝑦𝑎) → 𝑦 = 𝑎)) → ∀𝑥(((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥) → (𝑦 ∪ {𝑧}) = 𝑥))
8180ex 114 . . . . 5 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (∀𝑎((𝑦𝑎𝑦𝑎) → 𝑦 = 𝑎) → ∀𝑥(((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥) → (𝑦 ∪ {𝑧}) = 𝑥)))
8238, 81syl5bi 151 . . . 4 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (∀𝑥((𝑦𝑥𝑦𝑥) → 𝑦 = 𝑥) → ∀𝑥(((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥) → (𝑦 ∪ {𝑧}) = 𝑥)))
838, 14, 20, 26, 32, 82findcard2s 6868 . . 3 (𝐴 ∈ Fin → ∀𝑥((𝐴𝑥𝐴𝑥) → 𝐴 = 𝑥))
842, 83syl 14 . 2 ((𝐵 ∈ Fin ∧ 𝐴𝐵𝐴𝐵) → ∀𝑥((𝐴𝑥𝐴𝑥) → 𝐴 = 𝑥))
85 3simpc 991 . 2 ((𝐵 ∈ Fin ∧ 𝐴𝐵𝐴𝐵) → (𝐴𝐵𝐴𝐵))
86 sseq2 3171 . . . . . 6 (𝑥 = 𝐵 → (𝐴𝑥𝐴𝐵))
87 breq2 3993 . . . . . 6 (𝑥 = 𝐵 → (𝐴𝑥𝐴𝐵))
8886, 87anbi12d 470 . . . . 5 (𝑥 = 𝐵 → ((𝐴𝑥𝐴𝑥) ↔ (𝐴𝐵𝐴𝐵)))
89 eqeq2 2180 . . . . 5 (𝑥 = 𝐵 → (𝐴 = 𝑥𝐴 = 𝐵))
9088, 89imbi12d 233 . . . 4 (𝑥 = 𝐵 → (((𝐴𝑥𝐴𝑥) → 𝐴 = 𝑥) ↔ ((𝐴𝐵𝐴𝐵) → 𝐴 = 𝐵)))
9190spcgv 2817 . . 3 (𝐵 ∈ Fin → (∀𝑥((𝐴𝑥𝐴𝑥) → 𝐴 = 𝑥) → ((𝐴𝐵𝐴𝐵) → 𝐴 = 𝐵)))
92913ad2ant1 1013 . 2 ((𝐵 ∈ Fin ∧ 𝐴𝐵𝐴𝐵) → (∀𝑥((𝐴𝑥𝐴𝑥) → 𝐴 = 𝑥) → ((𝐴𝐵𝐴𝐵) → 𝐴 = 𝐵)))
9384, 85, 92mp2d 47 1 ((𝐵 ∈ Fin ∧ 𝐴𝐵𝐴𝐵) → 𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  w3a 973  wal 1346   = wceq 1348  wcel 2141  Vcvv 2730  cdif 3118  cun 3119  wss 3121  c0 3414  {csn 3583   class class class wbr 3989  cen 6716  Fincfn 6718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-1o 6395  df-er 6513  df-en 6719  df-fin 6721
This theorem is referenced by:  phpeqd  6910  f1finf1o  6924  en1eqsn  6925
  Copyright terms: Public domain W3C validator