Step | Hyp | Ref
| Expression |
1 | | enfii 6840 |
. . . 4
⊢ ((𝐵 ∈ Fin ∧ 𝐴 ≈ 𝐵) → 𝐴 ∈ Fin) |
2 | 1 | 3adant2 1006 |
. . 3
⊢ ((𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ∧ 𝐴 ≈ 𝐵) → 𝐴 ∈ Fin) |
3 | | sseq1 3165 |
. . . . . . 7
⊢ (𝑤 = ∅ → (𝑤 ⊆ 𝑥 ↔ ∅ ⊆ 𝑥)) |
4 | | breq1 3985 |
. . . . . . 7
⊢ (𝑤 = ∅ → (𝑤 ≈ 𝑥 ↔ ∅ ≈ 𝑥)) |
5 | 3, 4 | anbi12d 465 |
. . . . . 6
⊢ (𝑤 = ∅ → ((𝑤 ⊆ 𝑥 ∧ 𝑤 ≈ 𝑥) ↔ (∅ ⊆ 𝑥 ∧ ∅ ≈ 𝑥))) |
6 | | eqeq1 2172 |
. . . . . 6
⊢ (𝑤 = ∅ → (𝑤 = 𝑥 ↔ ∅ = 𝑥)) |
7 | 5, 6 | imbi12d 233 |
. . . . 5
⊢ (𝑤 = ∅ → (((𝑤 ⊆ 𝑥 ∧ 𝑤 ≈ 𝑥) → 𝑤 = 𝑥) ↔ ((∅ ⊆ 𝑥 ∧ ∅ ≈ 𝑥) → ∅ = 𝑥))) |
8 | 7 | albidv 1812 |
. . . 4
⊢ (𝑤 = ∅ → (∀𝑥((𝑤 ⊆ 𝑥 ∧ 𝑤 ≈ 𝑥) → 𝑤 = 𝑥) ↔ ∀𝑥((∅ ⊆ 𝑥 ∧ ∅ ≈ 𝑥) → ∅ = 𝑥))) |
9 | | sseq1 3165 |
. . . . . . 7
⊢ (𝑤 = 𝑦 → (𝑤 ⊆ 𝑥 ↔ 𝑦 ⊆ 𝑥)) |
10 | | breq1 3985 |
. . . . . . 7
⊢ (𝑤 = 𝑦 → (𝑤 ≈ 𝑥 ↔ 𝑦 ≈ 𝑥)) |
11 | 9, 10 | anbi12d 465 |
. . . . . 6
⊢ (𝑤 = 𝑦 → ((𝑤 ⊆ 𝑥 ∧ 𝑤 ≈ 𝑥) ↔ (𝑦 ⊆ 𝑥 ∧ 𝑦 ≈ 𝑥))) |
12 | | eqeq1 2172 |
. . . . . 6
⊢ (𝑤 = 𝑦 → (𝑤 = 𝑥 ↔ 𝑦 = 𝑥)) |
13 | 11, 12 | imbi12d 233 |
. . . . 5
⊢ (𝑤 = 𝑦 → (((𝑤 ⊆ 𝑥 ∧ 𝑤 ≈ 𝑥) → 𝑤 = 𝑥) ↔ ((𝑦 ⊆ 𝑥 ∧ 𝑦 ≈ 𝑥) → 𝑦 = 𝑥))) |
14 | 13 | albidv 1812 |
. . . 4
⊢ (𝑤 = 𝑦 → (∀𝑥((𝑤 ⊆ 𝑥 ∧ 𝑤 ≈ 𝑥) → 𝑤 = 𝑥) ↔ ∀𝑥((𝑦 ⊆ 𝑥 ∧ 𝑦 ≈ 𝑥) → 𝑦 = 𝑥))) |
15 | | sseq1 3165 |
. . . . . . 7
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → (𝑤 ⊆ 𝑥 ↔ (𝑦 ∪ {𝑧}) ⊆ 𝑥)) |
16 | | breq1 3985 |
. . . . . . 7
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → (𝑤 ≈ 𝑥 ↔ (𝑦 ∪ {𝑧}) ≈ 𝑥)) |
17 | 15, 16 | anbi12d 465 |
. . . . . 6
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → ((𝑤 ⊆ 𝑥 ∧ 𝑤 ≈ 𝑥) ↔ ((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥))) |
18 | | eqeq1 2172 |
. . . . . 6
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → (𝑤 = 𝑥 ↔ (𝑦 ∪ {𝑧}) = 𝑥)) |
19 | 17, 18 | imbi12d 233 |
. . . . 5
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → (((𝑤 ⊆ 𝑥 ∧ 𝑤 ≈ 𝑥) → 𝑤 = 𝑥) ↔ (((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥) → (𝑦 ∪ {𝑧}) = 𝑥))) |
20 | 19 | albidv 1812 |
. . . 4
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → (∀𝑥((𝑤 ⊆ 𝑥 ∧ 𝑤 ≈ 𝑥) → 𝑤 = 𝑥) ↔ ∀𝑥(((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥) → (𝑦 ∪ {𝑧}) = 𝑥))) |
21 | | sseq1 3165 |
. . . . . . 7
⊢ (𝑤 = 𝐴 → (𝑤 ⊆ 𝑥 ↔ 𝐴 ⊆ 𝑥)) |
22 | | breq1 3985 |
. . . . . . 7
⊢ (𝑤 = 𝐴 → (𝑤 ≈ 𝑥 ↔ 𝐴 ≈ 𝑥)) |
23 | 21, 22 | anbi12d 465 |
. . . . . 6
⊢ (𝑤 = 𝐴 → ((𝑤 ⊆ 𝑥 ∧ 𝑤 ≈ 𝑥) ↔ (𝐴 ⊆ 𝑥 ∧ 𝐴 ≈ 𝑥))) |
24 | | eqeq1 2172 |
. . . . . 6
⊢ (𝑤 = 𝐴 → (𝑤 = 𝑥 ↔ 𝐴 = 𝑥)) |
25 | 23, 24 | imbi12d 233 |
. . . . 5
⊢ (𝑤 = 𝐴 → (((𝑤 ⊆ 𝑥 ∧ 𝑤 ≈ 𝑥) → 𝑤 = 𝑥) ↔ ((𝐴 ⊆ 𝑥 ∧ 𝐴 ≈ 𝑥) → 𝐴 = 𝑥))) |
26 | 25 | albidv 1812 |
. . . 4
⊢ (𝑤 = 𝐴 → (∀𝑥((𝑤 ⊆ 𝑥 ∧ 𝑤 ≈ 𝑥) → 𝑤 = 𝑥) ↔ ∀𝑥((𝐴 ⊆ 𝑥 ∧ 𝐴 ≈ 𝑥) → 𝐴 = 𝑥))) |
27 | | ensym 6747 |
. . . . . . . 8
⊢ (∅
≈ 𝑥 → 𝑥 ≈
∅) |
28 | | en0 6761 |
. . . . . . . 8
⊢ (𝑥 ≈ ∅ ↔ 𝑥 = ∅) |
29 | 27, 28 | sylib 121 |
. . . . . . 7
⊢ (∅
≈ 𝑥 → 𝑥 = ∅) |
30 | 29 | eqcomd 2171 |
. . . . . 6
⊢ (∅
≈ 𝑥 → ∅ =
𝑥) |
31 | 30 | adantl 275 |
. . . . 5
⊢ ((∅
⊆ 𝑥 ∧ ∅
≈ 𝑥) → ∅ =
𝑥) |
32 | 31 | ax-gen 1437 |
. . . 4
⊢
∀𝑥((∅
⊆ 𝑥 ∧ ∅
≈ 𝑥) → ∅ =
𝑥) |
33 | | sseq2 3166 |
. . . . . . . 8
⊢ (𝑥 = 𝑎 → (𝑦 ⊆ 𝑥 ↔ 𝑦 ⊆ 𝑎)) |
34 | | breq2 3986 |
. . . . . . . 8
⊢ (𝑥 = 𝑎 → (𝑦 ≈ 𝑥 ↔ 𝑦 ≈ 𝑎)) |
35 | 33, 34 | anbi12d 465 |
. . . . . . 7
⊢ (𝑥 = 𝑎 → ((𝑦 ⊆ 𝑥 ∧ 𝑦 ≈ 𝑥) ↔ (𝑦 ⊆ 𝑎 ∧ 𝑦 ≈ 𝑎))) |
36 | | eqeq2 2175 |
. . . . . . 7
⊢ (𝑥 = 𝑎 → (𝑦 = 𝑥 ↔ 𝑦 = 𝑎)) |
37 | 35, 36 | imbi12d 233 |
. . . . . 6
⊢ (𝑥 = 𝑎 → (((𝑦 ⊆ 𝑥 ∧ 𝑦 ≈ 𝑥) → 𝑦 = 𝑥) ↔ ((𝑦 ⊆ 𝑎 ∧ 𝑦 ≈ 𝑎) → 𝑦 = 𝑎))) |
38 | 37 | cbvalv 1905 |
. . . . 5
⊢
(∀𝑥((𝑦 ⊆ 𝑥 ∧ 𝑦 ≈ 𝑥) → 𝑦 = 𝑥) ↔ ∀𝑎((𝑦 ⊆ 𝑎 ∧ 𝑦 ≈ 𝑎) → 𝑦 = 𝑎)) |
39 | | simplr 520 |
. . . . . . . . . . 11
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑎((𝑦 ⊆ 𝑎 ∧ 𝑦 ≈ 𝑎) → 𝑦 = 𝑎)) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥)) → ∀𝑎((𝑦 ⊆ 𝑎 ∧ 𝑦 ≈ 𝑎) → 𝑦 = 𝑎)) |
40 | | difun2 3488 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∪ {𝑧}) ∖ {𝑧}) = (𝑦 ∖ {𝑧}) |
41 | | difsn 3710 |
. . . . . . . . . . . . . . 15
⊢ (¬
𝑧 ∈ 𝑦 → (𝑦 ∖ {𝑧}) = 𝑦) |
42 | 41 | ad3antlr 485 |
. . . . . . . . . . . . . 14
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑎((𝑦 ⊆ 𝑎 ∧ 𝑦 ≈ 𝑎) → 𝑦 = 𝑎)) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥)) → (𝑦 ∖ {𝑧}) = 𝑦) |
43 | 40, 42 | syl5eq 2211 |
. . . . . . . . . . . . 13
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑎((𝑦 ⊆ 𝑎 ∧ 𝑦 ≈ 𝑎) → 𝑦 = 𝑎)) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥)) → ((𝑦 ∪ {𝑧}) ∖ {𝑧}) = 𝑦) |
44 | | simprl 521 |
. . . . . . . . . . . . . 14
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑎((𝑦 ⊆ 𝑎 ∧ 𝑦 ≈ 𝑎) → 𝑦 = 𝑎)) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥)) → (𝑦 ∪ {𝑧}) ⊆ 𝑥) |
45 | 44 | ssdifd 3258 |
. . . . . . . . . . . . 13
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑎((𝑦 ⊆ 𝑎 ∧ 𝑦 ≈ 𝑎) → 𝑦 = 𝑎)) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥)) → ((𝑦 ∪ {𝑧}) ∖ {𝑧}) ⊆ (𝑥 ∖ {𝑧})) |
46 | 43, 45 | eqsstrrd 3179 |
. . . . . . . . . . . 12
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑎((𝑦 ⊆ 𝑎 ∧ 𝑦 ≈ 𝑎) → 𝑦 = 𝑎)) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥)) → 𝑦 ⊆ (𝑥 ∖ {𝑧})) |
47 | | simplll 523 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑎((𝑦 ⊆ 𝑎 ∧ 𝑦 ≈ 𝑎) → 𝑦 = 𝑎)) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥)) → 𝑦 ∈ Fin) |
48 | | vex 2729 |
. . . . . . . . . . . . . . . 16
⊢ 𝑧 ∈ V |
49 | 48 | a1i 9 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑎((𝑦 ⊆ 𝑎 ∧ 𝑦 ≈ 𝑎) → 𝑦 = 𝑎)) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥)) → 𝑧 ∈ V) |
50 | | simpllr 524 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑎((𝑦 ⊆ 𝑎 ∧ 𝑦 ≈ 𝑎) → 𝑦 = 𝑎)) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥)) → ¬ 𝑧 ∈ 𝑦) |
51 | | unsnfi 6884 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ Fin ∧ 𝑧 ∈ V ∧ ¬ 𝑧 ∈ 𝑦) → (𝑦 ∪ {𝑧}) ∈ Fin) |
52 | 47, 49, 50, 51 | syl3anc 1228 |
. . . . . . . . . . . . . 14
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑎((𝑦 ⊆ 𝑎 ∧ 𝑦 ≈ 𝑎) → 𝑦 = 𝑎)) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥)) → (𝑦 ∪ {𝑧}) ∈ Fin) |
53 | | simprr 522 |
. . . . . . . . . . . . . 14
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑎((𝑦 ⊆ 𝑎 ∧ 𝑦 ≈ 𝑎) → 𝑦 = 𝑎)) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥)) → (𝑦 ∪ {𝑧}) ≈ 𝑥) |
54 | | vsnid 3608 |
. . . . . . . . . . . . . . . 16
⊢ 𝑧 ∈ {𝑧} |
55 | | elun2 3290 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ∈ {𝑧} → 𝑧 ∈ (𝑦 ∪ {𝑧})) |
56 | 54, 55 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ 𝑧 ∈ (𝑦 ∪ {𝑧}) |
57 | 56 | a1i 9 |
. . . . . . . . . . . . . 14
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑎((𝑦 ⊆ 𝑎 ∧ 𝑦 ≈ 𝑎) → 𝑦 = 𝑎)) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥)) → 𝑧 ∈ (𝑦 ∪ {𝑧})) |
58 | 44, 57 | sseldd 3143 |
. . . . . . . . . . . . . 14
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑎((𝑦 ⊆ 𝑎 ∧ 𝑦 ≈ 𝑎) → 𝑦 = 𝑎)) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥)) → 𝑧 ∈ 𝑥) |
59 | 52, 53, 57, 58 | dif1enen 6846 |
. . . . . . . . . . . . 13
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑎((𝑦 ⊆ 𝑎 ∧ 𝑦 ≈ 𝑎) → 𝑦 = 𝑎)) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥)) → ((𝑦 ∪ {𝑧}) ∖ {𝑧}) ≈ (𝑥 ∖ {𝑧})) |
60 | 43, 59 | eqbrtrrd 4006 |
. . . . . . . . . . . 12
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑎((𝑦 ⊆ 𝑎 ∧ 𝑦 ≈ 𝑎) → 𝑦 = 𝑎)) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥)) → 𝑦 ≈ (𝑥 ∖ {𝑧})) |
61 | 46, 60 | jca 304 |
. . . . . . . . . . 11
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑎((𝑦 ⊆ 𝑎 ∧ 𝑦 ≈ 𝑎) → 𝑦 = 𝑎)) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥)) → (𝑦 ⊆ (𝑥 ∖ {𝑧}) ∧ 𝑦 ≈ (𝑥 ∖ {𝑧}))) |
62 | | vex 2729 |
. . . . . . . . . . . . 13
⊢ 𝑥 ∈ V |
63 | | difexg 4123 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ V → (𝑥 ∖ {𝑧}) ∈ V) |
64 | 62, 63 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ (𝑥 ∖ {𝑧}) ∈ V |
65 | | sseq2 3166 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = (𝑥 ∖ {𝑧}) → (𝑦 ⊆ 𝑎 ↔ 𝑦 ⊆ (𝑥 ∖ {𝑧}))) |
66 | | breq2 3986 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = (𝑥 ∖ {𝑧}) → (𝑦 ≈ 𝑎 ↔ 𝑦 ≈ (𝑥 ∖ {𝑧}))) |
67 | 65, 66 | anbi12d 465 |
. . . . . . . . . . . . 13
⊢ (𝑎 = (𝑥 ∖ {𝑧}) → ((𝑦 ⊆ 𝑎 ∧ 𝑦 ≈ 𝑎) ↔ (𝑦 ⊆ (𝑥 ∖ {𝑧}) ∧ 𝑦 ≈ (𝑥 ∖ {𝑧})))) |
68 | | eqeq2 2175 |
. . . . . . . . . . . . 13
⊢ (𝑎 = (𝑥 ∖ {𝑧}) → (𝑦 = 𝑎 ↔ 𝑦 = (𝑥 ∖ {𝑧}))) |
69 | 67, 68 | imbi12d 233 |
. . . . . . . . . . . 12
⊢ (𝑎 = (𝑥 ∖ {𝑧}) → (((𝑦 ⊆ 𝑎 ∧ 𝑦 ≈ 𝑎) → 𝑦 = 𝑎) ↔ ((𝑦 ⊆ (𝑥 ∖ {𝑧}) ∧ 𝑦 ≈ (𝑥 ∖ {𝑧})) → 𝑦 = (𝑥 ∖ {𝑧})))) |
70 | 64, 69 | spcv 2820 |
. . . . . . . . . . 11
⊢
(∀𝑎((𝑦 ⊆ 𝑎 ∧ 𝑦 ≈ 𝑎) → 𝑦 = 𝑎) → ((𝑦 ⊆ (𝑥 ∖ {𝑧}) ∧ 𝑦 ≈ (𝑥 ∖ {𝑧})) → 𝑦 = (𝑥 ∖ {𝑧}))) |
71 | 39, 61, 70 | sylc 62 |
. . . . . . . . . 10
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑎((𝑦 ⊆ 𝑎 ∧ 𝑦 ≈ 𝑎) → 𝑦 = 𝑎)) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥)) → 𝑦 = (𝑥 ∖ {𝑧})) |
72 | 71 | uneq1d 3275 |
. . . . . . . . 9
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑎((𝑦 ⊆ 𝑎 ∧ 𝑦 ≈ 𝑎) → 𝑦 = 𝑎)) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥)) → (𝑦 ∪ {𝑧}) = ((𝑥 ∖ {𝑧}) ∪ {𝑧})) |
73 | 53 | ensymd 6749 |
. . . . . . . . . . 11
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑎((𝑦 ⊆ 𝑎 ∧ 𝑦 ≈ 𝑎) → 𝑦 = 𝑎)) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥)) → 𝑥 ≈ (𝑦 ∪ {𝑧})) |
74 | | enfii 6840 |
. . . . . . . . . . 11
⊢ (((𝑦 ∪ {𝑧}) ∈ Fin ∧ 𝑥 ≈ (𝑦 ∪ {𝑧})) → 𝑥 ∈ Fin) |
75 | 52, 73, 74 | syl2anc 409 |
. . . . . . . . . 10
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑎((𝑦 ⊆ 𝑎 ∧ 𝑦 ≈ 𝑎) → 𝑦 = 𝑎)) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥)) → 𝑥 ∈ Fin) |
76 | | fidifsnid 6837 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ Fin ∧ 𝑧 ∈ 𝑥) → ((𝑥 ∖ {𝑧}) ∪ {𝑧}) = 𝑥) |
77 | 75, 58, 76 | syl2anc 409 |
. . . . . . . . 9
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑎((𝑦 ⊆ 𝑎 ∧ 𝑦 ≈ 𝑎) → 𝑦 = 𝑎)) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥)) → ((𝑥 ∖ {𝑧}) ∪ {𝑧}) = 𝑥) |
78 | 72, 77 | eqtrd 2198 |
. . . . . . . 8
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑎((𝑦 ⊆ 𝑎 ∧ 𝑦 ≈ 𝑎) → 𝑦 = 𝑎)) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥)) → (𝑦 ∪ {𝑧}) = 𝑥) |
79 | 78 | ex 114 |
. . . . . . 7
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑎((𝑦 ⊆ 𝑎 ∧ 𝑦 ≈ 𝑎) → 𝑦 = 𝑎)) → (((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥) → (𝑦 ∪ {𝑧}) = 𝑥)) |
80 | 79 | alrimiv 1862 |
. . . . . 6
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑎((𝑦 ⊆ 𝑎 ∧ 𝑦 ≈ 𝑎) → 𝑦 = 𝑎)) → ∀𝑥(((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥) → (𝑦 ∪ {𝑧}) = 𝑥)) |
81 | 80 | ex 114 |
. . . . 5
⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → (∀𝑎((𝑦 ⊆ 𝑎 ∧ 𝑦 ≈ 𝑎) → 𝑦 = 𝑎) → ∀𝑥(((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥) → (𝑦 ∪ {𝑧}) = 𝑥))) |
82 | 38, 81 | syl5bi 151 |
. . . 4
⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → (∀𝑥((𝑦 ⊆ 𝑥 ∧ 𝑦 ≈ 𝑥) → 𝑦 = 𝑥) → ∀𝑥(((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥) → (𝑦 ∪ {𝑧}) = 𝑥))) |
83 | 8, 14, 20, 26, 32, 82 | findcard2s 6856 |
. . 3
⊢ (𝐴 ∈ Fin → ∀𝑥((𝐴 ⊆ 𝑥 ∧ 𝐴 ≈ 𝑥) → 𝐴 = 𝑥)) |
84 | 2, 83 | syl 14 |
. 2
⊢ ((𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ∧ 𝐴 ≈ 𝐵) → ∀𝑥((𝐴 ⊆ 𝑥 ∧ 𝐴 ≈ 𝑥) → 𝐴 = 𝑥)) |
85 | | 3simpc 986 |
. 2
⊢ ((𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ∧ 𝐴 ≈ 𝐵) → (𝐴 ⊆ 𝐵 ∧ 𝐴 ≈ 𝐵)) |
86 | | sseq2 3166 |
. . . . . 6
⊢ (𝑥 = 𝐵 → (𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ 𝐵)) |
87 | | breq2 3986 |
. . . . . 6
⊢ (𝑥 = 𝐵 → (𝐴 ≈ 𝑥 ↔ 𝐴 ≈ 𝐵)) |
88 | 86, 87 | anbi12d 465 |
. . . . 5
⊢ (𝑥 = 𝐵 → ((𝐴 ⊆ 𝑥 ∧ 𝐴 ≈ 𝑥) ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≈ 𝐵))) |
89 | | eqeq2 2175 |
. . . . 5
⊢ (𝑥 = 𝐵 → (𝐴 = 𝑥 ↔ 𝐴 = 𝐵)) |
90 | 88, 89 | imbi12d 233 |
. . . 4
⊢ (𝑥 = 𝐵 → (((𝐴 ⊆ 𝑥 ∧ 𝐴 ≈ 𝑥) → 𝐴 = 𝑥) ↔ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≈ 𝐵) → 𝐴 = 𝐵))) |
91 | 90 | spcgv 2813 |
. . 3
⊢ (𝐵 ∈ Fin →
(∀𝑥((𝐴 ⊆ 𝑥 ∧ 𝐴 ≈ 𝑥) → 𝐴 = 𝑥) → ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≈ 𝐵) → 𝐴 = 𝐵))) |
92 | 91 | 3ad2ant1 1008 |
. 2
⊢ ((𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ∧ 𝐴 ≈ 𝐵) → (∀𝑥((𝐴 ⊆ 𝑥 ∧ 𝐴 ≈ 𝑥) → 𝐴 = 𝑥) → ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≈ 𝐵) → 𝐴 = 𝐵))) |
93 | 84, 85, 92 | mp2d 47 |
1
⊢ ((𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ∧ 𝐴 ≈ 𝐵) → 𝐴 = 𝐵) |