| Step | Hyp | Ref
| Expression |
| 1 | | enfii 6935 |
. . . 4
⊢ ((𝐵 ∈ Fin ∧ 𝐴 ≈ 𝐵) → 𝐴 ∈ Fin) |
| 2 | 1 | 3adant2 1018 |
. . 3
⊢ ((𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ∧ 𝐴 ≈ 𝐵) → 𝐴 ∈ Fin) |
| 3 | | sseq1 3206 |
. . . . . . 7
⊢ (𝑤 = ∅ → (𝑤 ⊆ 𝑥 ↔ ∅ ⊆ 𝑥)) |
| 4 | | breq1 4036 |
. . . . . . 7
⊢ (𝑤 = ∅ → (𝑤 ≈ 𝑥 ↔ ∅ ≈ 𝑥)) |
| 5 | 3, 4 | anbi12d 473 |
. . . . . 6
⊢ (𝑤 = ∅ → ((𝑤 ⊆ 𝑥 ∧ 𝑤 ≈ 𝑥) ↔ (∅ ⊆ 𝑥 ∧ ∅ ≈ 𝑥))) |
| 6 | | eqeq1 2203 |
. . . . . 6
⊢ (𝑤 = ∅ → (𝑤 = 𝑥 ↔ ∅ = 𝑥)) |
| 7 | 5, 6 | imbi12d 234 |
. . . . 5
⊢ (𝑤 = ∅ → (((𝑤 ⊆ 𝑥 ∧ 𝑤 ≈ 𝑥) → 𝑤 = 𝑥) ↔ ((∅ ⊆ 𝑥 ∧ ∅ ≈ 𝑥) → ∅ = 𝑥))) |
| 8 | 7 | albidv 1838 |
. . . 4
⊢ (𝑤 = ∅ → (∀𝑥((𝑤 ⊆ 𝑥 ∧ 𝑤 ≈ 𝑥) → 𝑤 = 𝑥) ↔ ∀𝑥((∅ ⊆ 𝑥 ∧ ∅ ≈ 𝑥) → ∅ = 𝑥))) |
| 9 | | sseq1 3206 |
. . . . . . 7
⊢ (𝑤 = 𝑦 → (𝑤 ⊆ 𝑥 ↔ 𝑦 ⊆ 𝑥)) |
| 10 | | breq1 4036 |
. . . . . . 7
⊢ (𝑤 = 𝑦 → (𝑤 ≈ 𝑥 ↔ 𝑦 ≈ 𝑥)) |
| 11 | 9, 10 | anbi12d 473 |
. . . . . 6
⊢ (𝑤 = 𝑦 → ((𝑤 ⊆ 𝑥 ∧ 𝑤 ≈ 𝑥) ↔ (𝑦 ⊆ 𝑥 ∧ 𝑦 ≈ 𝑥))) |
| 12 | | eqeq1 2203 |
. . . . . 6
⊢ (𝑤 = 𝑦 → (𝑤 = 𝑥 ↔ 𝑦 = 𝑥)) |
| 13 | 11, 12 | imbi12d 234 |
. . . . 5
⊢ (𝑤 = 𝑦 → (((𝑤 ⊆ 𝑥 ∧ 𝑤 ≈ 𝑥) → 𝑤 = 𝑥) ↔ ((𝑦 ⊆ 𝑥 ∧ 𝑦 ≈ 𝑥) → 𝑦 = 𝑥))) |
| 14 | 13 | albidv 1838 |
. . . 4
⊢ (𝑤 = 𝑦 → (∀𝑥((𝑤 ⊆ 𝑥 ∧ 𝑤 ≈ 𝑥) → 𝑤 = 𝑥) ↔ ∀𝑥((𝑦 ⊆ 𝑥 ∧ 𝑦 ≈ 𝑥) → 𝑦 = 𝑥))) |
| 15 | | sseq1 3206 |
. . . . . . 7
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → (𝑤 ⊆ 𝑥 ↔ (𝑦 ∪ {𝑧}) ⊆ 𝑥)) |
| 16 | | breq1 4036 |
. . . . . . 7
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → (𝑤 ≈ 𝑥 ↔ (𝑦 ∪ {𝑧}) ≈ 𝑥)) |
| 17 | 15, 16 | anbi12d 473 |
. . . . . 6
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → ((𝑤 ⊆ 𝑥 ∧ 𝑤 ≈ 𝑥) ↔ ((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥))) |
| 18 | | eqeq1 2203 |
. . . . . 6
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → (𝑤 = 𝑥 ↔ (𝑦 ∪ {𝑧}) = 𝑥)) |
| 19 | 17, 18 | imbi12d 234 |
. . . . 5
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → (((𝑤 ⊆ 𝑥 ∧ 𝑤 ≈ 𝑥) → 𝑤 = 𝑥) ↔ (((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥) → (𝑦 ∪ {𝑧}) = 𝑥))) |
| 20 | 19 | albidv 1838 |
. . . 4
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → (∀𝑥((𝑤 ⊆ 𝑥 ∧ 𝑤 ≈ 𝑥) → 𝑤 = 𝑥) ↔ ∀𝑥(((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥) → (𝑦 ∪ {𝑧}) = 𝑥))) |
| 21 | | sseq1 3206 |
. . . . . . 7
⊢ (𝑤 = 𝐴 → (𝑤 ⊆ 𝑥 ↔ 𝐴 ⊆ 𝑥)) |
| 22 | | breq1 4036 |
. . . . . . 7
⊢ (𝑤 = 𝐴 → (𝑤 ≈ 𝑥 ↔ 𝐴 ≈ 𝑥)) |
| 23 | 21, 22 | anbi12d 473 |
. . . . . 6
⊢ (𝑤 = 𝐴 → ((𝑤 ⊆ 𝑥 ∧ 𝑤 ≈ 𝑥) ↔ (𝐴 ⊆ 𝑥 ∧ 𝐴 ≈ 𝑥))) |
| 24 | | eqeq1 2203 |
. . . . . 6
⊢ (𝑤 = 𝐴 → (𝑤 = 𝑥 ↔ 𝐴 = 𝑥)) |
| 25 | 23, 24 | imbi12d 234 |
. . . . 5
⊢ (𝑤 = 𝐴 → (((𝑤 ⊆ 𝑥 ∧ 𝑤 ≈ 𝑥) → 𝑤 = 𝑥) ↔ ((𝐴 ⊆ 𝑥 ∧ 𝐴 ≈ 𝑥) → 𝐴 = 𝑥))) |
| 26 | 25 | albidv 1838 |
. . . 4
⊢ (𝑤 = 𝐴 → (∀𝑥((𝑤 ⊆ 𝑥 ∧ 𝑤 ≈ 𝑥) → 𝑤 = 𝑥) ↔ ∀𝑥((𝐴 ⊆ 𝑥 ∧ 𝐴 ≈ 𝑥) → 𝐴 = 𝑥))) |
| 27 | | ensym 6840 |
. . . . . . . 8
⊢ (∅
≈ 𝑥 → 𝑥 ≈
∅) |
| 28 | | en0 6854 |
. . . . . . . 8
⊢ (𝑥 ≈ ∅ ↔ 𝑥 = ∅) |
| 29 | 27, 28 | sylib 122 |
. . . . . . 7
⊢ (∅
≈ 𝑥 → 𝑥 = ∅) |
| 30 | 29 | eqcomd 2202 |
. . . . . 6
⊢ (∅
≈ 𝑥 → ∅ =
𝑥) |
| 31 | 30 | adantl 277 |
. . . . 5
⊢ ((∅
⊆ 𝑥 ∧ ∅
≈ 𝑥) → ∅ =
𝑥) |
| 32 | 31 | ax-gen 1463 |
. . . 4
⊢
∀𝑥((∅
⊆ 𝑥 ∧ ∅
≈ 𝑥) → ∅ =
𝑥) |
| 33 | | sseq2 3207 |
. . . . . . . 8
⊢ (𝑥 = 𝑎 → (𝑦 ⊆ 𝑥 ↔ 𝑦 ⊆ 𝑎)) |
| 34 | | breq2 4037 |
. . . . . . . 8
⊢ (𝑥 = 𝑎 → (𝑦 ≈ 𝑥 ↔ 𝑦 ≈ 𝑎)) |
| 35 | 33, 34 | anbi12d 473 |
. . . . . . 7
⊢ (𝑥 = 𝑎 → ((𝑦 ⊆ 𝑥 ∧ 𝑦 ≈ 𝑥) ↔ (𝑦 ⊆ 𝑎 ∧ 𝑦 ≈ 𝑎))) |
| 36 | | eqeq2 2206 |
. . . . . . 7
⊢ (𝑥 = 𝑎 → (𝑦 = 𝑥 ↔ 𝑦 = 𝑎)) |
| 37 | 35, 36 | imbi12d 234 |
. . . . . 6
⊢ (𝑥 = 𝑎 → (((𝑦 ⊆ 𝑥 ∧ 𝑦 ≈ 𝑥) → 𝑦 = 𝑥) ↔ ((𝑦 ⊆ 𝑎 ∧ 𝑦 ≈ 𝑎) → 𝑦 = 𝑎))) |
| 38 | 37 | cbvalv 1932 |
. . . . 5
⊢
(∀𝑥((𝑦 ⊆ 𝑥 ∧ 𝑦 ≈ 𝑥) → 𝑦 = 𝑥) ↔ ∀𝑎((𝑦 ⊆ 𝑎 ∧ 𝑦 ≈ 𝑎) → 𝑦 = 𝑎)) |
| 39 | | simplr 528 |
. . . . . . . . . . 11
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑎((𝑦 ⊆ 𝑎 ∧ 𝑦 ≈ 𝑎) → 𝑦 = 𝑎)) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥)) → ∀𝑎((𝑦 ⊆ 𝑎 ∧ 𝑦 ≈ 𝑎) → 𝑦 = 𝑎)) |
| 40 | | difun2 3530 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∪ {𝑧}) ∖ {𝑧}) = (𝑦 ∖ {𝑧}) |
| 41 | | difsn 3759 |
. . . . . . . . . . . . . . 15
⊢ (¬
𝑧 ∈ 𝑦 → (𝑦 ∖ {𝑧}) = 𝑦) |
| 42 | 41 | ad3antlr 493 |
. . . . . . . . . . . . . 14
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑎((𝑦 ⊆ 𝑎 ∧ 𝑦 ≈ 𝑎) → 𝑦 = 𝑎)) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥)) → (𝑦 ∖ {𝑧}) = 𝑦) |
| 43 | 40, 42 | eqtrid 2241 |
. . . . . . . . . . . . 13
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑎((𝑦 ⊆ 𝑎 ∧ 𝑦 ≈ 𝑎) → 𝑦 = 𝑎)) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥)) → ((𝑦 ∪ {𝑧}) ∖ {𝑧}) = 𝑦) |
| 44 | | simprl 529 |
. . . . . . . . . . . . . 14
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑎((𝑦 ⊆ 𝑎 ∧ 𝑦 ≈ 𝑎) → 𝑦 = 𝑎)) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥)) → (𝑦 ∪ {𝑧}) ⊆ 𝑥) |
| 45 | 44 | ssdifd 3299 |
. . . . . . . . . . . . 13
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑎((𝑦 ⊆ 𝑎 ∧ 𝑦 ≈ 𝑎) → 𝑦 = 𝑎)) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥)) → ((𝑦 ∪ {𝑧}) ∖ {𝑧}) ⊆ (𝑥 ∖ {𝑧})) |
| 46 | 43, 45 | eqsstrrd 3220 |
. . . . . . . . . . . 12
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑎((𝑦 ⊆ 𝑎 ∧ 𝑦 ≈ 𝑎) → 𝑦 = 𝑎)) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥)) → 𝑦 ⊆ (𝑥 ∖ {𝑧})) |
| 47 | | simplll 533 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑎((𝑦 ⊆ 𝑎 ∧ 𝑦 ≈ 𝑎) → 𝑦 = 𝑎)) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥)) → 𝑦 ∈ Fin) |
| 48 | | vex 2766 |
. . . . . . . . . . . . . . . 16
⊢ 𝑧 ∈ V |
| 49 | 48 | a1i 9 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑎((𝑦 ⊆ 𝑎 ∧ 𝑦 ≈ 𝑎) → 𝑦 = 𝑎)) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥)) → 𝑧 ∈ V) |
| 50 | | simpllr 534 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑎((𝑦 ⊆ 𝑎 ∧ 𝑦 ≈ 𝑎) → 𝑦 = 𝑎)) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥)) → ¬ 𝑧 ∈ 𝑦) |
| 51 | | unsnfi 6980 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ Fin ∧ 𝑧 ∈ V ∧ ¬ 𝑧 ∈ 𝑦) → (𝑦 ∪ {𝑧}) ∈ Fin) |
| 52 | 47, 49, 50, 51 | syl3anc 1249 |
. . . . . . . . . . . . . 14
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑎((𝑦 ⊆ 𝑎 ∧ 𝑦 ≈ 𝑎) → 𝑦 = 𝑎)) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥)) → (𝑦 ∪ {𝑧}) ∈ Fin) |
| 53 | | simprr 531 |
. . . . . . . . . . . . . 14
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑎((𝑦 ⊆ 𝑎 ∧ 𝑦 ≈ 𝑎) → 𝑦 = 𝑎)) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥)) → (𝑦 ∪ {𝑧}) ≈ 𝑥) |
| 54 | | vsnid 3654 |
. . . . . . . . . . . . . . . 16
⊢ 𝑧 ∈ {𝑧} |
| 55 | | elun2 3331 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ∈ {𝑧} → 𝑧 ∈ (𝑦 ∪ {𝑧})) |
| 56 | 54, 55 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ 𝑧 ∈ (𝑦 ∪ {𝑧}) |
| 57 | 56 | a1i 9 |
. . . . . . . . . . . . . 14
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑎((𝑦 ⊆ 𝑎 ∧ 𝑦 ≈ 𝑎) → 𝑦 = 𝑎)) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥)) → 𝑧 ∈ (𝑦 ∪ {𝑧})) |
| 58 | 44, 57 | sseldd 3184 |
. . . . . . . . . . . . . 14
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑎((𝑦 ⊆ 𝑎 ∧ 𝑦 ≈ 𝑎) → 𝑦 = 𝑎)) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥)) → 𝑧 ∈ 𝑥) |
| 59 | 52, 53, 57, 58 | dif1enen 6941 |
. . . . . . . . . . . . 13
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑎((𝑦 ⊆ 𝑎 ∧ 𝑦 ≈ 𝑎) → 𝑦 = 𝑎)) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥)) → ((𝑦 ∪ {𝑧}) ∖ {𝑧}) ≈ (𝑥 ∖ {𝑧})) |
| 60 | 43, 59 | eqbrtrrd 4057 |
. . . . . . . . . . . 12
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑎((𝑦 ⊆ 𝑎 ∧ 𝑦 ≈ 𝑎) → 𝑦 = 𝑎)) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥)) → 𝑦 ≈ (𝑥 ∖ {𝑧})) |
| 61 | 46, 60 | jca 306 |
. . . . . . . . . . 11
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑎((𝑦 ⊆ 𝑎 ∧ 𝑦 ≈ 𝑎) → 𝑦 = 𝑎)) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥)) → (𝑦 ⊆ (𝑥 ∖ {𝑧}) ∧ 𝑦 ≈ (𝑥 ∖ {𝑧}))) |
| 62 | | vex 2766 |
. . . . . . . . . . . . 13
⊢ 𝑥 ∈ V |
| 63 | | difexg 4174 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ V → (𝑥 ∖ {𝑧}) ∈ V) |
| 64 | 62, 63 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ (𝑥 ∖ {𝑧}) ∈ V |
| 65 | | sseq2 3207 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = (𝑥 ∖ {𝑧}) → (𝑦 ⊆ 𝑎 ↔ 𝑦 ⊆ (𝑥 ∖ {𝑧}))) |
| 66 | | breq2 4037 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = (𝑥 ∖ {𝑧}) → (𝑦 ≈ 𝑎 ↔ 𝑦 ≈ (𝑥 ∖ {𝑧}))) |
| 67 | 65, 66 | anbi12d 473 |
. . . . . . . . . . . . 13
⊢ (𝑎 = (𝑥 ∖ {𝑧}) → ((𝑦 ⊆ 𝑎 ∧ 𝑦 ≈ 𝑎) ↔ (𝑦 ⊆ (𝑥 ∖ {𝑧}) ∧ 𝑦 ≈ (𝑥 ∖ {𝑧})))) |
| 68 | | eqeq2 2206 |
. . . . . . . . . . . . 13
⊢ (𝑎 = (𝑥 ∖ {𝑧}) → (𝑦 = 𝑎 ↔ 𝑦 = (𝑥 ∖ {𝑧}))) |
| 69 | 67, 68 | imbi12d 234 |
. . . . . . . . . . . 12
⊢ (𝑎 = (𝑥 ∖ {𝑧}) → (((𝑦 ⊆ 𝑎 ∧ 𝑦 ≈ 𝑎) → 𝑦 = 𝑎) ↔ ((𝑦 ⊆ (𝑥 ∖ {𝑧}) ∧ 𝑦 ≈ (𝑥 ∖ {𝑧})) → 𝑦 = (𝑥 ∖ {𝑧})))) |
| 70 | 64, 69 | spcv 2858 |
. . . . . . . . . . 11
⊢
(∀𝑎((𝑦 ⊆ 𝑎 ∧ 𝑦 ≈ 𝑎) → 𝑦 = 𝑎) → ((𝑦 ⊆ (𝑥 ∖ {𝑧}) ∧ 𝑦 ≈ (𝑥 ∖ {𝑧})) → 𝑦 = (𝑥 ∖ {𝑧}))) |
| 71 | 39, 61, 70 | sylc 62 |
. . . . . . . . . 10
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑎((𝑦 ⊆ 𝑎 ∧ 𝑦 ≈ 𝑎) → 𝑦 = 𝑎)) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥)) → 𝑦 = (𝑥 ∖ {𝑧})) |
| 72 | 71 | uneq1d 3316 |
. . . . . . . . 9
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑎((𝑦 ⊆ 𝑎 ∧ 𝑦 ≈ 𝑎) → 𝑦 = 𝑎)) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥)) → (𝑦 ∪ {𝑧}) = ((𝑥 ∖ {𝑧}) ∪ {𝑧})) |
| 73 | 53 | ensymd 6842 |
. . . . . . . . . . 11
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑎((𝑦 ⊆ 𝑎 ∧ 𝑦 ≈ 𝑎) → 𝑦 = 𝑎)) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥)) → 𝑥 ≈ (𝑦 ∪ {𝑧})) |
| 74 | | enfii 6935 |
. . . . . . . . . . 11
⊢ (((𝑦 ∪ {𝑧}) ∈ Fin ∧ 𝑥 ≈ (𝑦 ∪ {𝑧})) → 𝑥 ∈ Fin) |
| 75 | 52, 73, 74 | syl2anc 411 |
. . . . . . . . . 10
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑎((𝑦 ⊆ 𝑎 ∧ 𝑦 ≈ 𝑎) → 𝑦 = 𝑎)) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥)) → 𝑥 ∈ Fin) |
| 76 | | fidifsnid 6932 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ Fin ∧ 𝑧 ∈ 𝑥) → ((𝑥 ∖ {𝑧}) ∪ {𝑧}) = 𝑥) |
| 77 | 75, 58, 76 | syl2anc 411 |
. . . . . . . . 9
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑎((𝑦 ⊆ 𝑎 ∧ 𝑦 ≈ 𝑎) → 𝑦 = 𝑎)) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥)) → ((𝑥 ∖ {𝑧}) ∪ {𝑧}) = 𝑥) |
| 78 | 72, 77 | eqtrd 2229 |
. . . . . . . 8
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑎((𝑦 ⊆ 𝑎 ∧ 𝑦 ≈ 𝑎) → 𝑦 = 𝑎)) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥)) → (𝑦 ∪ {𝑧}) = 𝑥) |
| 79 | 78 | ex 115 |
. . . . . . 7
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑎((𝑦 ⊆ 𝑎 ∧ 𝑦 ≈ 𝑎) → 𝑦 = 𝑎)) → (((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥) → (𝑦 ∪ {𝑧}) = 𝑥)) |
| 80 | 79 | alrimiv 1888 |
. . . . . 6
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑎((𝑦 ⊆ 𝑎 ∧ 𝑦 ≈ 𝑎) → 𝑦 = 𝑎)) → ∀𝑥(((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥) → (𝑦 ∪ {𝑧}) = 𝑥)) |
| 81 | 80 | ex 115 |
. . . . 5
⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → (∀𝑎((𝑦 ⊆ 𝑎 ∧ 𝑦 ≈ 𝑎) → 𝑦 = 𝑎) → ∀𝑥(((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥) → (𝑦 ∪ {𝑧}) = 𝑥))) |
| 82 | 38, 81 | biimtrid 152 |
. . . 4
⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → (∀𝑥((𝑦 ⊆ 𝑥 ∧ 𝑦 ≈ 𝑥) → 𝑦 = 𝑥) → ∀𝑥(((𝑦 ∪ {𝑧}) ⊆ 𝑥 ∧ (𝑦 ∪ {𝑧}) ≈ 𝑥) → (𝑦 ∪ {𝑧}) = 𝑥))) |
| 83 | 8, 14, 20, 26, 32, 82 | findcard2s 6951 |
. . 3
⊢ (𝐴 ∈ Fin → ∀𝑥((𝐴 ⊆ 𝑥 ∧ 𝐴 ≈ 𝑥) → 𝐴 = 𝑥)) |
| 84 | 2, 83 | syl 14 |
. 2
⊢ ((𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ∧ 𝐴 ≈ 𝐵) → ∀𝑥((𝐴 ⊆ 𝑥 ∧ 𝐴 ≈ 𝑥) → 𝐴 = 𝑥)) |
| 85 | | 3simpc 998 |
. 2
⊢ ((𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ∧ 𝐴 ≈ 𝐵) → (𝐴 ⊆ 𝐵 ∧ 𝐴 ≈ 𝐵)) |
| 86 | | sseq2 3207 |
. . . . . 6
⊢ (𝑥 = 𝐵 → (𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ 𝐵)) |
| 87 | | breq2 4037 |
. . . . . 6
⊢ (𝑥 = 𝐵 → (𝐴 ≈ 𝑥 ↔ 𝐴 ≈ 𝐵)) |
| 88 | 86, 87 | anbi12d 473 |
. . . . 5
⊢ (𝑥 = 𝐵 → ((𝐴 ⊆ 𝑥 ∧ 𝐴 ≈ 𝑥) ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≈ 𝐵))) |
| 89 | | eqeq2 2206 |
. . . . 5
⊢ (𝑥 = 𝐵 → (𝐴 = 𝑥 ↔ 𝐴 = 𝐵)) |
| 90 | 88, 89 | imbi12d 234 |
. . . 4
⊢ (𝑥 = 𝐵 → (((𝐴 ⊆ 𝑥 ∧ 𝐴 ≈ 𝑥) → 𝐴 = 𝑥) ↔ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≈ 𝐵) → 𝐴 = 𝐵))) |
| 91 | 90 | spcgv 2851 |
. . 3
⊢ (𝐵 ∈ Fin →
(∀𝑥((𝐴 ⊆ 𝑥 ∧ 𝐴 ≈ 𝑥) → 𝐴 = 𝑥) → ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≈ 𝐵) → 𝐴 = 𝐵))) |
| 92 | 91 | 3ad2ant1 1020 |
. 2
⊢ ((𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ∧ 𝐴 ≈ 𝐵) → (∀𝑥((𝐴 ⊆ 𝑥 ∧ 𝐴 ≈ 𝑥) → 𝐴 = 𝑥) → ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≈ 𝐵) → 𝐴 = 𝐵))) |
| 93 | 84, 85, 92 | mp2d 47 |
1
⊢ ((𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ∧ 𝐴 ≈ 𝐵) → 𝐴 = 𝐵) |