| Step | Hyp | Ref
 | Expression | 
| 1 |   | 2prm 12295 | 
. . . 4
⊢ 2 ∈
ℙ | 
| 2 |   | pcndvds2 12488 | 
. . . 4
⊢ ((2
∈ ℙ ∧ 𝐾
∈ ℕ) → ¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))) | 
| 3 | 1, 2 | mpan 424 | 
. . 3
⊢ (𝐾 ∈ ℕ → ¬ 2
∥ (𝐾 / (2↑(2
pCnt 𝐾)))) | 
| 4 |   | pcdvds 12484 | 
. . . 4
⊢ ((2
∈ ℙ ∧ 𝐾
∈ ℕ) → (2↑(2 pCnt 𝐾)) ∥ 𝐾) | 
| 5 | 1, 4 | mpan 424 | 
. . 3
⊢ (𝐾 ∈ ℕ →
(2↑(2 pCnt 𝐾)) ∥
𝐾) | 
| 6 |   | 2nn 9152 | 
. . . . . . . . 9
⊢ 2 ∈
ℕ | 
| 7 | 6 | a1i 9 | 
. . . . . . . 8
⊢ (𝐾 ∈ ℕ → 2 ∈
ℕ) | 
| 8 | 1 | a1i 9 | 
. . . . . . . . 9
⊢ (𝐾 ∈ ℕ → 2 ∈
ℙ) | 
| 9 |   | id 19 | 
. . . . . . . . 9
⊢ (𝐾 ∈ ℕ → 𝐾 ∈
ℕ) | 
| 10 | 8, 9 | pccld 12469 | 
. . . . . . . 8
⊢ (𝐾 ∈ ℕ → (2 pCnt
𝐾) ∈
ℕ0) | 
| 11 | 7, 10 | nnexpcld 10787 | 
. . . . . . 7
⊢ (𝐾 ∈ ℕ →
(2↑(2 pCnt 𝐾)) ∈
ℕ) | 
| 12 |   | nndivdvds 11961 | 
. . . . . . 7
⊢ ((𝐾 ∈ ℕ ∧ (2↑(2
pCnt 𝐾)) ∈ ℕ)
→ ((2↑(2 pCnt 𝐾))
∥ 𝐾 ↔ (𝐾 / (2↑(2 pCnt 𝐾))) ∈
ℕ)) | 
| 13 | 11, 12 | mpdan 421 | 
. . . . . 6
⊢ (𝐾 ∈ ℕ →
((2↑(2 pCnt 𝐾))
∥ 𝐾 ↔ (𝐾 / (2↑(2 pCnt 𝐾))) ∈
ℕ)) | 
| 14 | 13 | adantr 276 | 
. . . . 5
⊢ ((𝐾 ∈ ℕ ∧ ¬ 2
∥ (𝐾 / (2↑(2
pCnt 𝐾)))) →
((2↑(2 pCnt 𝐾))
∥ 𝐾 ↔ (𝐾 / (2↑(2 pCnt 𝐾))) ∈
ℕ)) | 
| 15 |   | elnn1uz2 9681 | 
. . . . . . 7
⊢ ((𝐾 / (2↑(2 pCnt 𝐾))) ∈ ℕ ↔
((𝐾 / (2↑(2 pCnt 𝐾))) = 1 ∨ (𝐾 / (2↑(2 pCnt 𝐾))) ∈
(ℤ≥‘2))) | 
| 16 |   | nncn 8998 | 
. . . . . . . . . . . . 13
⊢ (𝐾 ∈ ℕ → 𝐾 ∈
ℂ) | 
| 17 | 11 | nncnd 9004 | 
. . . . . . . . . . . . 13
⊢ (𝐾 ∈ ℕ →
(2↑(2 pCnt 𝐾)) ∈
ℂ) | 
| 18 | 11 | nnap0d 9036 | 
. . . . . . . . . . . . 13
⊢ (𝐾 ∈ ℕ →
(2↑(2 pCnt 𝐾)) #
0) | 
| 19 | 16, 17, 18 | 3jca 1179 | 
. . . . . . . . . . . 12
⊢ (𝐾 ∈ ℕ → (𝐾 ∈ ℂ ∧ (2↑(2
pCnt 𝐾)) ∈ ℂ
∧ (2↑(2 pCnt 𝐾)) #
0)) | 
| 20 | 19 | adantr 276 | 
. . . . . . . . . . 11
⊢ ((𝐾 ∈ ℕ ∧ ¬ 2
∥ (𝐾 / (2↑(2
pCnt 𝐾)))) → (𝐾 ∈ ℂ ∧ (2↑(2
pCnt 𝐾)) ∈ ℂ
∧ (2↑(2 pCnt 𝐾)) #
0)) | 
| 21 |   | diveqap1 8732 | 
. . . . . . . . . . 11
⊢ ((𝐾 ∈ ℂ ∧ (2↑(2
pCnt 𝐾)) ∈ ℂ
∧ (2↑(2 pCnt 𝐾)) #
0) → ((𝐾 / (2↑(2
pCnt 𝐾))) = 1 ↔ 𝐾 = (2↑(2 pCnt 𝐾)))) | 
| 22 | 20, 21 | syl 14 | 
. . . . . . . . . 10
⊢ ((𝐾 ∈ ℕ ∧ ¬ 2
∥ (𝐾 / (2↑(2
pCnt 𝐾)))) → ((𝐾 / (2↑(2 pCnt 𝐾))) = 1 ↔ 𝐾 = (2↑(2 pCnt 𝐾)))) | 
| 23 | 10 | adantr 276 | 
. . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ ℕ ∧ 𝐾 = (2↑(2 pCnt 𝐾))) → (2 pCnt 𝐾) ∈
ℕ0) | 
| 24 |   | oveq2 5930 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = (2 pCnt 𝐾) → (2↑𝑛) = (2↑(2 pCnt 𝐾))) | 
| 25 | 24 | eqeq2d 2208 | 
. . . . . . . . . . . . . . 15
⊢ (𝑛 = (2 pCnt 𝐾) → (𝐾 = (2↑𝑛) ↔ 𝐾 = (2↑(2 pCnt 𝐾)))) | 
| 26 | 25 | adantl 277 | 
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ ℕ ∧ 𝐾 = (2↑(2 pCnt 𝐾))) ∧ 𝑛 = (2 pCnt 𝐾)) → (𝐾 = (2↑𝑛) ↔ 𝐾 = (2↑(2 pCnt 𝐾)))) | 
| 27 |   | simpr 110 | 
. . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ ℕ ∧ 𝐾 = (2↑(2 pCnt 𝐾))) → 𝐾 = (2↑(2 pCnt 𝐾))) | 
| 28 | 23, 26, 27 | rspcedvd 2874 | 
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ ℕ ∧ 𝐾 = (2↑(2 pCnt 𝐾))) → ∃𝑛 ∈ ℕ0
𝐾 = (2↑𝑛)) | 
| 29 | 28 | ex 115 | 
. . . . . . . . . . . 12
⊢ (𝐾 ∈ ℕ → (𝐾 = (2↑(2 pCnt 𝐾)) → ∃𝑛 ∈ ℕ0
𝐾 = (2↑𝑛))) | 
| 30 |   | pm2.24 622 | 
. . . . . . . . . . . 12
⊢
(∃𝑛 ∈
ℕ0 𝐾 =
(2↑𝑛) → (¬
∃𝑛 ∈
ℕ0 𝐾 =
(2↑𝑛) →
∃𝑝 ∈ (ℙ
∖ {2})𝑝 ∥ 𝐾)) | 
| 31 | 29, 30 | syl6 33 | 
. . . . . . . . . . 11
⊢ (𝐾 ∈ ℕ → (𝐾 = (2↑(2 pCnt 𝐾)) → (¬ ∃𝑛 ∈ ℕ0
𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖
{2})𝑝 ∥ 𝐾))) | 
| 32 | 31 | adantr 276 | 
. . . . . . . . . 10
⊢ ((𝐾 ∈ ℕ ∧ ¬ 2
∥ (𝐾 / (2↑(2
pCnt 𝐾)))) → (𝐾 = (2↑(2 pCnt 𝐾)) → (¬ ∃𝑛 ∈ ℕ0
𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖
{2})𝑝 ∥ 𝐾))) | 
| 33 | 22, 32 | sylbid 150 | 
. . . . . . . . 9
⊢ ((𝐾 ∈ ℕ ∧ ¬ 2
∥ (𝐾 / (2↑(2
pCnt 𝐾)))) → ((𝐾 / (2↑(2 pCnt 𝐾))) = 1 → (¬
∃𝑛 ∈
ℕ0 𝐾 =
(2↑𝑛) →
∃𝑝 ∈ (ℙ
∖ {2})𝑝 ∥ 𝐾))) | 
| 34 | 33 | com12 30 | 
. . . . . . . 8
⊢ ((𝐾 / (2↑(2 pCnt 𝐾))) = 1 → ((𝐾 ∈ ℕ ∧ ¬ 2
∥ (𝐾 / (2↑(2
pCnt 𝐾)))) → (¬
∃𝑛 ∈
ℕ0 𝐾 =
(2↑𝑛) →
∃𝑝 ∈ (ℙ
∖ {2})𝑝 ∥ 𝐾))) | 
| 35 |   | exprmfct 12306 | 
. . . . . . . . 9
⊢ ((𝐾 / (2↑(2 pCnt 𝐾))) ∈
(ℤ≥‘2) → ∃𝑞 ∈ ℙ 𝑞 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))) | 
| 36 |   | breq1 4036 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝑞 = 2 → (𝑞 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) ↔ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾))))) | 
| 37 | 36 | biimpcd 159 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑞 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) → (𝑞 = 2 → 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾))))) | 
| 38 | 37 | adantl 277 | 
. . . . . . . . . . . . . . 15
⊢ (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))) → (𝑞 = 2 → 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾))))) | 
| 39 | 38 | necon3bd 2410 | 
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))) → (¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) → 𝑞 ≠ 2)) | 
| 40 | 39 | ex 115 | 
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) → (𝑞 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) → (¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) → 𝑞 ≠ 2))) | 
| 41 |   | prmnn 12278 | 
. . . . . . . . . . . . . . 15
⊢ (𝑞 ∈ ℙ → 𝑞 ∈
ℕ) | 
| 42 | 5, 13 | mpbid 147 | 
. . . . . . . . . . . . . . 15
⊢ (𝐾 ∈ ℕ → (𝐾 / (2↑(2 pCnt 𝐾))) ∈
ℕ) | 
| 43 |   | nndivides 11962 | 
. . . . . . . . . . . . . . 15
⊢ ((𝑞 ∈ ℕ ∧ (𝐾 / (2↑(2 pCnt 𝐾))) ∈ ℕ) →
(𝑞 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) ↔ ∃𝑚 ∈ ℕ (𝑚 · 𝑞) = (𝐾 / (2↑(2 pCnt 𝐾))))) | 
| 44 | 41, 42, 43 | syl2anr 290 | 
. . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) → (𝑞 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) ↔ ∃𝑚 ∈ ℕ (𝑚 · 𝑞) = (𝐾 / (2↑(2 pCnt 𝐾))))) | 
| 45 |   | eqcom 2198 | 
. . . . . . . . . . . . . . . . 17
⊢ ((𝑚 · 𝑞) = (𝐾 / (2↑(2 pCnt 𝐾))) ↔ (𝐾 / (2↑(2 pCnt 𝐾))) = (𝑚 · 𝑞)) | 
| 46 | 16 | ad2antrr 488 | 
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → 𝐾 ∈
ℂ) | 
| 47 |   | simpr 110 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈
ℕ) | 
| 48 | 41 | ad2antlr 489 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → 𝑞 ∈
ℕ) | 
| 49 | 47, 48 | nnmulcld 9039 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → (𝑚 · 𝑞) ∈ ℕ) | 
| 50 | 49 | nncnd 9004 | 
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → (𝑚 · 𝑞) ∈ ℂ) | 
| 51 | 17, 18 | jca 306 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐾 ∈ ℕ →
((2↑(2 pCnt 𝐾)) ∈
ℂ ∧ (2↑(2 pCnt 𝐾)) # 0)) | 
| 52 | 51 | ad2antrr 488 | 
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) →
((2↑(2 pCnt 𝐾)) ∈
ℂ ∧ (2↑(2 pCnt 𝐾)) # 0)) | 
| 53 |   | divmulap 8702 | 
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐾 ∈ ℂ ∧ (𝑚 · 𝑞) ∈ ℂ ∧ ((2↑(2 pCnt 𝐾)) ∈ ℂ ∧
(2↑(2 pCnt 𝐾)) # 0))
→ ((𝐾 / (2↑(2
pCnt 𝐾))) = (𝑚 · 𝑞) ↔ ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)) = 𝐾)) | 
| 54 | 46, 50, 52, 53 | syl3anc 1249 | 
. . . . . . . . . . . . . . . . 17
⊢ (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → ((𝐾 / (2↑(2 pCnt 𝐾))) = (𝑚 · 𝑞) ↔ ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)) = 𝐾)) | 
| 55 | 45, 54 | bitrid 192 | 
. . . . . . . . . . . . . . . 16
⊢ (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → ((𝑚 · 𝑞) = (𝐾 / (2↑(2 pCnt 𝐾))) ↔ ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)) = 𝐾)) | 
| 56 |   | simpr 110 | 
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) → 𝑞 ∈
ℙ) | 
| 57 | 56 | adantr 276 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → 𝑞 ∈
ℙ) | 
| 58 | 57 | anim1i 340 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) ∧ 𝑞 ≠ 2) → (𝑞 ∈ ℙ ∧ 𝑞 ≠ 2)) | 
| 59 |   | eldifsn 3749 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑞 ∈ (ℙ ∖ {2})
↔ (𝑞 ∈ ℙ
∧ 𝑞 ≠
2)) | 
| 60 | 58, 59 | sylibr 134 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) ∧ 𝑞 ≠ 2) → 𝑞 ∈ (ℙ ∖
{2})) | 
| 61 | 60 | adantr 276 | 
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝐾 ∈
ℕ ∧ 𝑞 ∈
ℙ) ∧ 𝑚 ∈
ℕ) ∧ 𝑞 ≠ 2)
∧ ((2↑(2 pCnt 𝐾))
· (𝑚 · 𝑞)) = 𝐾) → 𝑞 ∈ (ℙ ∖
{2})) | 
| 62 |   | breq1 4036 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑝 = 𝑞 → (𝑝 ∥ 𝐾 ↔ 𝑞 ∥ 𝐾)) | 
| 63 | 62 | adantl 277 | 
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝐾 ∈
ℕ ∧ 𝑞 ∈
ℙ) ∧ 𝑚 ∈
ℕ) ∧ 𝑞 ≠ 2)
∧ ((2↑(2 pCnt 𝐾))
· (𝑚 · 𝑞)) = 𝐾) ∧ 𝑝 = 𝑞) → (𝑝 ∥ 𝐾 ↔ 𝑞 ∥ 𝐾)) | 
| 64 | 11 | ad2antrr 488 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) →
(2↑(2 pCnt 𝐾)) ∈
ℕ) | 
| 65 | 64, 47 | nnmulcld 9039 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) →
((2↑(2 pCnt 𝐾))
· 𝑚) ∈
ℕ) | 
| 66 | 65 | nnzd 9447 | 
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) →
((2↑(2 pCnt 𝐾))
· 𝑚) ∈
ℤ) | 
| 67 | 41 | nnzd 9447 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑞 ∈ ℙ → 𝑞 ∈
ℤ) | 
| 68 | 67 | ad2antlr 489 | 
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → 𝑞 ∈
ℤ) | 
| 69 | 66, 68 | jca 306 | 
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) →
(((2↑(2 pCnt 𝐾))
· 𝑚) ∈ ℤ
∧ 𝑞 ∈
ℤ)) | 
| 70 | 69 | adantr 276 | 
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) ∧ 𝑞 ≠ 2) → (((2↑(2
pCnt 𝐾)) · 𝑚) ∈ ℤ ∧ 𝑞 ∈
ℤ)) | 
| 71 |   | dvdsmul2 11979 | 
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((2↑(2 pCnt 𝐾)) · 𝑚) ∈ ℤ ∧ 𝑞 ∈ ℤ) → 𝑞 ∥ (((2↑(2 pCnt 𝐾)) · 𝑚) · 𝑞)) | 
| 72 | 70, 71 | syl 14 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) ∧ 𝑞 ≠ 2) → 𝑞 ∥ (((2↑(2 pCnt 𝐾)) · 𝑚) · 𝑞)) | 
| 73 |   | 2nn0 9266 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ 2 ∈
ℕ0 | 
| 74 | 73 | a1i 9 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝐾 ∈ ℕ → 2 ∈
ℕ0) | 
| 75 | 74, 10 | nn0expcld 10788 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝐾 ∈ ℕ →
(2↑(2 pCnt 𝐾)) ∈
ℕ0) | 
| 76 | 75 | ad2antrr 488 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) →
(2↑(2 pCnt 𝐾)) ∈
ℕ0) | 
| 77 | 76 | nn0cnd 9304 | 
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) →
(2↑(2 pCnt 𝐾)) ∈
ℂ) | 
| 78 |   | nncn 8998 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑚 ∈ ℕ → 𝑚 ∈
ℂ) | 
| 79 | 78 | adantl 277 | 
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈
ℂ) | 
| 80 | 41 | nncnd 9004 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑞 ∈ ℙ → 𝑞 ∈
ℂ) | 
| 81 | 80 | ad2antlr 489 | 
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → 𝑞 ∈
ℂ) | 
| 82 | 77, 79, 81 | 3jca 1179 | 
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) →
((2↑(2 pCnt 𝐾)) ∈
ℂ ∧ 𝑚 ∈
ℂ ∧ 𝑞 ∈
ℂ)) | 
| 83 | 82 | adantr 276 | 
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) ∧ 𝑞 ≠ 2) → ((2↑(2 pCnt
𝐾)) ∈ ℂ ∧
𝑚 ∈ ℂ ∧
𝑞 ∈
ℂ)) | 
| 84 |   | mulass 8010 | 
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((2↑(2 pCnt 𝐾)) ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑞 ∈ ℂ) → (((2↑(2 pCnt
𝐾)) · 𝑚) · 𝑞) = ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞))) | 
| 85 | 83, 84 | syl 14 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) ∧ 𝑞 ≠ 2) → (((2↑(2
pCnt 𝐾)) · 𝑚) · 𝑞) = ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞))) | 
| 86 | 72, 85 | breqtrd 4059 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) ∧ 𝑞 ≠ 2) → 𝑞 ∥ ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞))) | 
| 87 | 86 | adantr 276 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝐾 ∈
ℕ ∧ 𝑞 ∈
ℙ) ∧ 𝑚 ∈
ℕ) ∧ 𝑞 ≠ 2)
∧ ((2↑(2 pCnt 𝐾))
· (𝑚 · 𝑞)) = 𝐾) → 𝑞 ∥ ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞))) | 
| 88 |   | breq2 4037 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)) = 𝐾 → (𝑞 ∥ ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)) ↔ 𝑞 ∥ 𝐾)) | 
| 89 | 88 | adantl 277 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝐾 ∈
ℕ ∧ 𝑞 ∈
ℙ) ∧ 𝑚 ∈
ℕ) ∧ 𝑞 ≠ 2)
∧ ((2↑(2 pCnt 𝐾))
· (𝑚 · 𝑞)) = 𝐾) → (𝑞 ∥ ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)) ↔ 𝑞 ∥ 𝐾)) | 
| 90 | 87, 89 | mpbid 147 | 
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝐾 ∈
ℕ ∧ 𝑞 ∈
ℙ) ∧ 𝑚 ∈
ℕ) ∧ 𝑞 ≠ 2)
∧ ((2↑(2 pCnt 𝐾))
· (𝑚 · 𝑞)) = 𝐾) → 𝑞 ∥ 𝐾) | 
| 91 | 61, 63, 90 | rspcedvd 2874 | 
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐾 ∈
ℕ ∧ 𝑞 ∈
ℙ) ∧ 𝑚 ∈
ℕ) ∧ 𝑞 ≠ 2)
∧ ((2↑(2 pCnt 𝐾))
· (𝑚 · 𝑞)) = 𝐾) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝 ∥ 𝐾) | 
| 92 | 91 | a1d 22 | 
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐾 ∈
ℕ ∧ 𝑞 ∈
ℙ) ∧ 𝑚 ∈
ℕ) ∧ 𝑞 ≠ 2)
∧ ((2↑(2 pCnt 𝐾))
· (𝑚 · 𝑞)) = 𝐾) → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝 ∥ 𝐾)) | 
| 93 | 92 | exp31 364 | 
. . . . . . . . . . . . . . . . 17
⊢ (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → (𝑞 ≠ 2 → (((2↑(2 pCnt
𝐾)) · (𝑚 · 𝑞)) = 𝐾 → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝 ∥ 𝐾)))) | 
| 94 | 93 | com23 78 | 
. . . . . . . . . . . . . . . 16
⊢ (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) →
(((2↑(2 pCnt 𝐾))
· (𝑚 · 𝑞)) = 𝐾 → (𝑞 ≠ 2 → (¬ ∃𝑛 ∈ ℕ0
𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖
{2})𝑝 ∥ 𝐾)))) | 
| 95 | 55, 94 | sylbid 150 | 
. . . . . . . . . . . . . . 15
⊢ (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → ((𝑚 · 𝑞) = (𝐾 / (2↑(2 pCnt 𝐾))) → (𝑞 ≠ 2 → (¬ ∃𝑛 ∈ ℕ0
𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖
{2})𝑝 ∥ 𝐾)))) | 
| 96 | 95 | rexlimdva 2614 | 
. . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) →
(∃𝑚 ∈ ℕ
(𝑚 · 𝑞) = (𝐾 / (2↑(2 pCnt 𝐾))) → (𝑞 ≠ 2 → (¬ ∃𝑛 ∈ ℕ0
𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖
{2})𝑝 ∥ 𝐾)))) | 
| 97 | 44, 96 | sylbid 150 | 
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) → (𝑞 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) → (𝑞 ≠ 2 → (¬ ∃𝑛 ∈ ℕ0
𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖
{2})𝑝 ∥ 𝐾)))) | 
| 98 | 40, 97 | syldd 67 | 
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) → (𝑞 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) → (¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) → (¬ ∃𝑛 ∈ ℕ0
𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖
{2})𝑝 ∥ 𝐾)))) | 
| 99 | 98 | rexlimdva 2614 | 
. . . . . . . . . . 11
⊢ (𝐾 ∈ ℕ →
(∃𝑞 ∈ ℙ
𝑞 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) → (¬ 2 ∥
(𝐾 / (2↑(2 pCnt 𝐾))) → (¬ ∃𝑛 ∈ ℕ0
𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖
{2})𝑝 ∥ 𝐾)))) | 
| 100 | 99 | com12 30 | 
. . . . . . . . . 10
⊢
(∃𝑞 ∈
ℙ 𝑞 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) → (𝐾 ∈ ℕ → (¬ 2 ∥
(𝐾 / (2↑(2 pCnt 𝐾))) → (¬ ∃𝑛 ∈ ℕ0
𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖
{2})𝑝 ∥ 𝐾)))) | 
| 101 | 100 | impd 254 | 
. . . . . . . . 9
⊢
(∃𝑞 ∈
ℙ 𝑞 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) → ((𝐾 ∈ ℕ ∧ ¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))) → (¬ ∃𝑛 ∈ ℕ0
𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖
{2})𝑝 ∥ 𝐾))) | 
| 102 | 35, 101 | syl 14 | 
. . . . . . . 8
⊢ ((𝐾 / (2↑(2 pCnt 𝐾))) ∈
(ℤ≥‘2) → ((𝐾 ∈ ℕ ∧ ¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))) → (¬ ∃𝑛 ∈ ℕ0
𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖
{2})𝑝 ∥ 𝐾))) | 
| 103 | 34, 102 | jaoi 717 | 
. . . . . . 7
⊢ (((𝐾 / (2↑(2 pCnt 𝐾))) = 1 ∨ (𝐾 / (2↑(2 pCnt 𝐾))) ∈ (ℤ≥‘2))
→ ((𝐾 ∈ ℕ
∧ ¬ 2 ∥ (𝐾 /
(2↑(2 pCnt 𝐾))))
→ (¬ ∃𝑛
∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝 ∥ 𝐾))) | 
| 104 | 15, 103 | sylbi 121 | 
. . . . . 6
⊢ ((𝐾 / (2↑(2 pCnt 𝐾))) ∈ ℕ →
((𝐾 ∈ ℕ ∧
¬ 2 ∥ (𝐾 /
(2↑(2 pCnt 𝐾))))
→ (¬ ∃𝑛
∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝 ∥ 𝐾))) | 
| 105 | 104 | com12 30 | 
. . . . 5
⊢ ((𝐾 ∈ ℕ ∧ ¬ 2
∥ (𝐾 / (2↑(2
pCnt 𝐾)))) → ((𝐾 / (2↑(2 pCnt 𝐾))) ∈ ℕ → (¬
∃𝑛 ∈
ℕ0 𝐾 =
(2↑𝑛) →
∃𝑝 ∈ (ℙ
∖ {2})𝑝 ∥ 𝐾))) | 
| 106 | 14, 105 | sylbid 150 | 
. . . 4
⊢ ((𝐾 ∈ ℕ ∧ ¬ 2
∥ (𝐾 / (2↑(2
pCnt 𝐾)))) →
((2↑(2 pCnt 𝐾))
∥ 𝐾 → (¬
∃𝑛 ∈
ℕ0 𝐾 =
(2↑𝑛) →
∃𝑝 ∈ (ℙ
∖ {2})𝑝 ∥ 𝐾))) | 
| 107 | 106 | ex 115 | 
. . 3
⊢ (𝐾 ∈ ℕ → (¬ 2
∥ (𝐾 / (2↑(2
pCnt 𝐾))) →
((2↑(2 pCnt 𝐾))
∥ 𝐾 → (¬
∃𝑛 ∈
ℕ0 𝐾 =
(2↑𝑛) →
∃𝑝 ∈ (ℙ
∖ {2})𝑝 ∥ 𝐾)))) | 
| 108 | 3, 5, 107 | mp2d 47 | 
. 2
⊢ (𝐾 ∈ ℕ → (¬
∃𝑛 ∈
ℕ0 𝐾 =
(2↑𝑛) →
∃𝑝 ∈ (ℙ
∖ {2})𝑝 ∥ 𝐾)) | 
| 109 | 108 | imp 124 | 
1
⊢ ((𝐾 ∈ ℕ ∧ ¬
∃𝑛 ∈
ℕ0 𝐾 =
(2↑𝑛)) →
∃𝑝 ∈ (ℙ
∖ {2})𝑝 ∥ 𝐾) |