ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oddprmdvds GIF version

Theorem oddprmdvds 12335
Description: Every positive integer which is not a power of two is divisible by an odd prime number. (Contributed by AV, 6-Aug-2021.)
Assertion
Ref Expression
oddprmdvds ((𝐾 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛)) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾)
Distinct variable group:   𝑛,𝐾,𝑝

Proof of Theorem oddprmdvds
Dummy variables 𝑚 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2prm 12110 . . . 4 2 ∈ ℙ
2 pcndvds2 12301 . . . 4 ((2 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾))))
31, 2mpan 424 . . 3 (𝐾 ∈ ℕ → ¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾))))
4 pcdvds 12297 . . . 4 ((2 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (2↑(2 pCnt 𝐾)) ∥ 𝐾)
51, 4mpan 424 . . 3 (𝐾 ∈ ℕ → (2↑(2 pCnt 𝐾)) ∥ 𝐾)
6 2nn 9069 . . . . . . . . 9 2 ∈ ℕ
76a1i 9 . . . . . . . 8 (𝐾 ∈ ℕ → 2 ∈ ℕ)
81a1i 9 . . . . . . . . 9 (𝐾 ∈ ℕ → 2 ∈ ℙ)
9 id 19 . . . . . . . . 9 (𝐾 ∈ ℕ → 𝐾 ∈ ℕ)
108, 9pccld 12283 . . . . . . . 8 (𝐾 ∈ ℕ → (2 pCnt 𝐾) ∈ ℕ0)
117, 10nnexpcld 10661 . . . . . . 7 (𝐾 ∈ ℕ → (2↑(2 pCnt 𝐾)) ∈ ℕ)
12 nndivdvds 11787 . . . . . . 7 ((𝐾 ∈ ℕ ∧ (2↑(2 pCnt 𝐾)) ∈ ℕ) → ((2↑(2 pCnt 𝐾)) ∥ 𝐾 ↔ (𝐾 / (2↑(2 pCnt 𝐾))) ∈ ℕ))
1311, 12mpdan 421 . . . . . 6 (𝐾 ∈ ℕ → ((2↑(2 pCnt 𝐾)) ∥ 𝐾 ↔ (𝐾 / (2↑(2 pCnt 𝐾))) ∈ ℕ))
1413adantr 276 . . . . 5 ((𝐾 ∈ ℕ ∧ ¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))) → ((2↑(2 pCnt 𝐾)) ∥ 𝐾 ↔ (𝐾 / (2↑(2 pCnt 𝐾))) ∈ ℕ))
15 elnn1uz2 9596 . . . . . . 7 ((𝐾 / (2↑(2 pCnt 𝐾))) ∈ ℕ ↔ ((𝐾 / (2↑(2 pCnt 𝐾))) = 1 ∨ (𝐾 / (2↑(2 pCnt 𝐾))) ∈ (ℤ‘2)))
16 nncn 8916 . . . . . . . . . . . . 13 (𝐾 ∈ ℕ → 𝐾 ∈ ℂ)
1711nncnd 8922 . . . . . . . . . . . . 13 (𝐾 ∈ ℕ → (2↑(2 pCnt 𝐾)) ∈ ℂ)
1811nnap0d 8954 . . . . . . . . . . . . 13 (𝐾 ∈ ℕ → (2↑(2 pCnt 𝐾)) # 0)
1916, 17, 183jca 1177 . . . . . . . . . . . 12 (𝐾 ∈ ℕ → (𝐾 ∈ ℂ ∧ (2↑(2 pCnt 𝐾)) ∈ ℂ ∧ (2↑(2 pCnt 𝐾)) # 0))
2019adantr 276 . . . . . . . . . . 11 ((𝐾 ∈ ℕ ∧ ¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))) → (𝐾 ∈ ℂ ∧ (2↑(2 pCnt 𝐾)) ∈ ℂ ∧ (2↑(2 pCnt 𝐾)) # 0))
21 diveqap1 8651 . . . . . . . . . . 11 ((𝐾 ∈ ℂ ∧ (2↑(2 pCnt 𝐾)) ∈ ℂ ∧ (2↑(2 pCnt 𝐾)) # 0) → ((𝐾 / (2↑(2 pCnt 𝐾))) = 1 ↔ 𝐾 = (2↑(2 pCnt 𝐾))))
2220, 21syl 14 . . . . . . . . . 10 ((𝐾 ∈ ℕ ∧ ¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))) → ((𝐾 / (2↑(2 pCnt 𝐾))) = 1 ↔ 𝐾 = (2↑(2 pCnt 𝐾))))
2310adantr 276 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℕ ∧ 𝐾 = (2↑(2 pCnt 𝐾))) → (2 pCnt 𝐾) ∈ ℕ0)
24 oveq2 5877 . . . . . . . . . . . . . . . 16 (𝑛 = (2 pCnt 𝐾) → (2↑𝑛) = (2↑(2 pCnt 𝐾)))
2524eqeq2d 2189 . . . . . . . . . . . . . . 15 (𝑛 = (2 pCnt 𝐾) → (𝐾 = (2↑𝑛) ↔ 𝐾 = (2↑(2 pCnt 𝐾))))
2625adantl 277 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ ∧ 𝐾 = (2↑(2 pCnt 𝐾))) ∧ 𝑛 = (2 pCnt 𝐾)) → (𝐾 = (2↑𝑛) ↔ 𝐾 = (2↑(2 pCnt 𝐾))))
27 simpr 110 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℕ ∧ 𝐾 = (2↑(2 pCnt 𝐾))) → 𝐾 = (2↑(2 pCnt 𝐾)))
2823, 26, 27rspcedvd 2847 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ ∧ 𝐾 = (2↑(2 pCnt 𝐾))) → ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛))
2928ex 115 . . . . . . . . . . . 12 (𝐾 ∈ ℕ → (𝐾 = (2↑(2 pCnt 𝐾)) → ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛)))
30 pm2.24 621 . . . . . . . . . . . 12 (∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾))
3129, 30syl6 33 . . . . . . . . . . 11 (𝐾 ∈ ℕ → (𝐾 = (2↑(2 pCnt 𝐾)) → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾)))
3231adantr 276 . . . . . . . . . 10 ((𝐾 ∈ ℕ ∧ ¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))) → (𝐾 = (2↑(2 pCnt 𝐾)) → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾)))
3322, 32sylbid 150 . . . . . . . . 9 ((𝐾 ∈ ℕ ∧ ¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))) → ((𝐾 / (2↑(2 pCnt 𝐾))) = 1 → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾)))
3433com12 30 . . . . . . . 8 ((𝐾 / (2↑(2 pCnt 𝐾))) = 1 → ((𝐾 ∈ ℕ ∧ ¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))) → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾)))
35 exprmfct 12121 . . . . . . . . 9 ((𝐾 / (2↑(2 pCnt 𝐾))) ∈ (ℤ‘2) → ∃𝑞 ∈ ℙ 𝑞 ∥ (𝐾 / (2↑(2 pCnt 𝐾))))
36 breq1 4003 . . . . . . . . . . . . . . . . 17 (𝑞 = 2 → (𝑞 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) ↔ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))))
3736biimpcd 159 . . . . . . . . . . . . . . . 16 (𝑞 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) → (𝑞 = 2 → 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))))
3837adantl 277 . . . . . . . . . . . . . . 15 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))) → (𝑞 = 2 → 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))))
3938necon3bd 2390 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))) → (¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) → 𝑞 ≠ 2))
4039ex 115 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) → (𝑞 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) → (¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) → 𝑞 ≠ 2)))
41 prmnn 12093 . . . . . . . . . . . . . . 15 (𝑞 ∈ ℙ → 𝑞 ∈ ℕ)
425, 13mpbid 147 . . . . . . . . . . . . . . 15 (𝐾 ∈ ℕ → (𝐾 / (2↑(2 pCnt 𝐾))) ∈ ℕ)
43 nndivides 11788 . . . . . . . . . . . . . . 15 ((𝑞 ∈ ℕ ∧ (𝐾 / (2↑(2 pCnt 𝐾))) ∈ ℕ) → (𝑞 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) ↔ ∃𝑚 ∈ ℕ (𝑚 · 𝑞) = (𝐾 / (2↑(2 pCnt 𝐾)))))
4441, 42, 43syl2anr 290 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) → (𝑞 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) ↔ ∃𝑚 ∈ ℕ (𝑚 · 𝑞) = (𝐾 / (2↑(2 pCnt 𝐾)))))
45 eqcom 2179 . . . . . . . . . . . . . . . . 17 ((𝑚 · 𝑞) = (𝐾 / (2↑(2 pCnt 𝐾))) ↔ (𝐾 / (2↑(2 pCnt 𝐾))) = (𝑚 · 𝑞))
4616ad2antrr 488 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → 𝐾 ∈ ℂ)
47 simpr 110 . . . . . . . . . . . . . . . . . . . 20 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℕ)
4841ad2antlr 489 . . . . . . . . . . . . . . . . . . . 20 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → 𝑞 ∈ ℕ)
4947, 48nnmulcld 8957 . . . . . . . . . . . . . . . . . . 19 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → (𝑚 · 𝑞) ∈ ℕ)
5049nncnd 8922 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → (𝑚 · 𝑞) ∈ ℂ)
5117, 18jca 306 . . . . . . . . . . . . . . . . . . 19 (𝐾 ∈ ℕ → ((2↑(2 pCnt 𝐾)) ∈ ℂ ∧ (2↑(2 pCnt 𝐾)) # 0))
5251ad2antrr 488 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → ((2↑(2 pCnt 𝐾)) ∈ ℂ ∧ (2↑(2 pCnt 𝐾)) # 0))
53 divmulap 8621 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ ℂ ∧ (𝑚 · 𝑞) ∈ ℂ ∧ ((2↑(2 pCnt 𝐾)) ∈ ℂ ∧ (2↑(2 pCnt 𝐾)) # 0)) → ((𝐾 / (2↑(2 pCnt 𝐾))) = (𝑚 · 𝑞) ↔ ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)) = 𝐾))
5446, 50, 52, 53syl3anc 1238 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → ((𝐾 / (2↑(2 pCnt 𝐾))) = (𝑚 · 𝑞) ↔ ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)) = 𝐾))
5545, 54bitrid 192 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → ((𝑚 · 𝑞) = (𝐾 / (2↑(2 pCnt 𝐾))) ↔ ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)) = 𝐾))
56 simpr 110 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) → 𝑞 ∈ ℙ)
5756adantr 276 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → 𝑞 ∈ ℙ)
5857anim1i 340 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) ∧ 𝑞 ≠ 2) → (𝑞 ∈ ℙ ∧ 𝑞 ≠ 2))
59 eldifsn 3718 . . . . . . . . . . . . . . . . . . . . . 22 (𝑞 ∈ (ℙ ∖ {2}) ↔ (𝑞 ∈ ℙ ∧ 𝑞 ≠ 2))
6058, 59sylibr 134 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) ∧ 𝑞 ≠ 2) → 𝑞 ∈ (ℙ ∖ {2}))
6160adantr 276 . . . . . . . . . . . . . . . . . . . 20 (((((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) ∧ 𝑞 ≠ 2) ∧ ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)) = 𝐾) → 𝑞 ∈ (ℙ ∖ {2}))
62 breq1 4003 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 = 𝑞 → (𝑝𝐾𝑞𝐾))
6362adantl 277 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) ∧ 𝑞 ≠ 2) ∧ ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)) = 𝐾) ∧ 𝑝 = 𝑞) → (𝑝𝐾𝑞𝐾))
6411ad2antrr 488 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → (2↑(2 pCnt 𝐾)) ∈ ℕ)
6564, 47nnmulcld 8957 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → ((2↑(2 pCnt 𝐾)) · 𝑚) ∈ ℕ)
6665nnzd 9363 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → ((2↑(2 pCnt 𝐾)) · 𝑚) ∈ ℤ)
6741nnzd 9363 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑞 ∈ ℙ → 𝑞 ∈ ℤ)
6867ad2antlr 489 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → 𝑞 ∈ ℤ)
6966, 68jca 306 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → (((2↑(2 pCnt 𝐾)) · 𝑚) ∈ ℤ ∧ 𝑞 ∈ ℤ))
7069adantr 276 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) ∧ 𝑞 ≠ 2) → (((2↑(2 pCnt 𝐾)) · 𝑚) ∈ ℤ ∧ 𝑞 ∈ ℤ))
71 dvdsmul2 11805 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((2↑(2 pCnt 𝐾)) · 𝑚) ∈ ℤ ∧ 𝑞 ∈ ℤ) → 𝑞 ∥ (((2↑(2 pCnt 𝐾)) · 𝑚) · 𝑞))
7270, 71syl 14 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) ∧ 𝑞 ≠ 2) → 𝑞 ∥ (((2↑(2 pCnt 𝐾)) · 𝑚) · 𝑞))
73 2nn0 9182 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2 ∈ ℕ0
7473a1i 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐾 ∈ ℕ → 2 ∈ ℕ0)
7574, 10nn0expcld 10662 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐾 ∈ ℕ → (2↑(2 pCnt 𝐾)) ∈ ℕ0)
7675ad2antrr 488 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → (2↑(2 pCnt 𝐾)) ∈ ℕ0)
7776nn0cnd 9220 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → (2↑(2 pCnt 𝐾)) ∈ ℂ)
78 nncn 8916 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑚 ∈ ℕ → 𝑚 ∈ ℂ)
7978adantl 277 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℂ)
8041nncnd 8922 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑞 ∈ ℙ → 𝑞 ∈ ℂ)
8180ad2antlr 489 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → 𝑞 ∈ ℂ)
8277, 79, 813jca 1177 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → ((2↑(2 pCnt 𝐾)) ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑞 ∈ ℂ))
8382adantr 276 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) ∧ 𝑞 ≠ 2) → ((2↑(2 pCnt 𝐾)) ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑞 ∈ ℂ))
84 mulass 7933 . . . . . . . . . . . . . . . . . . . . . . . 24 (((2↑(2 pCnt 𝐾)) ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑞 ∈ ℂ) → (((2↑(2 pCnt 𝐾)) · 𝑚) · 𝑞) = ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)))
8583, 84syl 14 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) ∧ 𝑞 ≠ 2) → (((2↑(2 pCnt 𝐾)) · 𝑚) · 𝑞) = ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)))
8672, 85breqtrd 4026 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) ∧ 𝑞 ≠ 2) → 𝑞 ∥ ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)))
8786adantr 276 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) ∧ 𝑞 ≠ 2) ∧ ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)) = 𝐾) → 𝑞 ∥ ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)))
88 breq2 4004 . . . . . . . . . . . . . . . . . . . . . 22 (((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)) = 𝐾 → (𝑞 ∥ ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)) ↔ 𝑞𝐾))
8988adantl 277 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) ∧ 𝑞 ≠ 2) ∧ ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)) = 𝐾) → (𝑞 ∥ ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)) ↔ 𝑞𝐾))
9087, 89mpbid 147 . . . . . . . . . . . . . . . . . . . 20 (((((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) ∧ 𝑞 ≠ 2) ∧ ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)) = 𝐾) → 𝑞𝐾)
9161, 63, 90rspcedvd 2847 . . . . . . . . . . . . . . . . . . 19 (((((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) ∧ 𝑞 ≠ 2) ∧ ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)) = 𝐾) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾)
9291a1d 22 . . . . . . . . . . . . . . . . . 18 (((((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) ∧ 𝑞 ≠ 2) ∧ ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)) = 𝐾) → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾))
9392exp31 364 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → (𝑞 ≠ 2 → (((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)) = 𝐾 → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾))))
9493com23 78 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → (((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)) = 𝐾 → (𝑞 ≠ 2 → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾))))
9555, 94sylbid 150 . . . . . . . . . . . . . . 15 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → ((𝑚 · 𝑞) = (𝐾 / (2↑(2 pCnt 𝐾))) → (𝑞 ≠ 2 → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾))))
9695rexlimdva 2594 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) → (∃𝑚 ∈ ℕ (𝑚 · 𝑞) = (𝐾 / (2↑(2 pCnt 𝐾))) → (𝑞 ≠ 2 → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾))))
9744, 96sylbid 150 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) → (𝑞 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) → (𝑞 ≠ 2 → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾))))
9840, 97syldd 67 . . . . . . . . . . . 12 ((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) → (𝑞 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) → (¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾))))
9998rexlimdva 2594 . . . . . . . . . . 11 (𝐾 ∈ ℕ → (∃𝑞 ∈ ℙ 𝑞 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) → (¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾))))
10099com12 30 . . . . . . . . . 10 (∃𝑞 ∈ ℙ 𝑞 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) → (𝐾 ∈ ℕ → (¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾))))
101100impd 254 . . . . . . . . 9 (∃𝑞 ∈ ℙ 𝑞 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) → ((𝐾 ∈ ℕ ∧ ¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))) → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾)))
10235, 101syl 14 . . . . . . . 8 ((𝐾 / (2↑(2 pCnt 𝐾))) ∈ (ℤ‘2) → ((𝐾 ∈ ℕ ∧ ¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))) → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾)))
10334, 102jaoi 716 . . . . . . 7 (((𝐾 / (2↑(2 pCnt 𝐾))) = 1 ∨ (𝐾 / (2↑(2 pCnt 𝐾))) ∈ (ℤ‘2)) → ((𝐾 ∈ ℕ ∧ ¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))) → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾)))
10415, 103sylbi 121 . . . . . 6 ((𝐾 / (2↑(2 pCnt 𝐾))) ∈ ℕ → ((𝐾 ∈ ℕ ∧ ¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))) → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾)))
105104com12 30 . . . . 5 ((𝐾 ∈ ℕ ∧ ¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))) → ((𝐾 / (2↑(2 pCnt 𝐾))) ∈ ℕ → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾)))
10614, 105sylbid 150 . . . 4 ((𝐾 ∈ ℕ ∧ ¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))) → ((2↑(2 pCnt 𝐾)) ∥ 𝐾 → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾)))
107106ex 115 . . 3 (𝐾 ∈ ℕ → (¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) → ((2↑(2 pCnt 𝐾)) ∥ 𝐾 → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾))))
1083, 5, 107mp2d 47 . 2 (𝐾 ∈ ℕ → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾))
109108imp 124 1 ((𝐾 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛)) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 708  w3a 978   = wceq 1353  wcel 2148  wne 2347  wrex 2456  cdif 3126  {csn 3591   class class class wbr 4000  cfv 5212  (class class class)co 5869  cc 7800  0cc0 7802  1c1 7803   · cmul 7807   # cap 8528   / cdiv 8618  cn 8908  2c2 8959  0cn0 9165  cz 9242  cuz 9517  cexp 10505  cdvds 11778  cprime 12090   pCnt cpc 12267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-1o 6411  df-2o 6412  df-er 6529  df-en 6735  df-sup 6977  df-inf 6978  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-fz 9996  df-fzo 10129  df-fl 10256  df-mod 10309  df-seqfrec 10432  df-exp 10506  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-dvds 11779  df-gcd 11927  df-prm 12091  df-pc 12268
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator