ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oddprmdvds GIF version

Theorem oddprmdvds 12523
Description: Every positive integer which is not a power of two is divisible by an odd prime number. (Contributed by AV, 6-Aug-2021.)
Assertion
Ref Expression
oddprmdvds ((𝐾 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛)) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾)
Distinct variable group:   𝑛,𝐾,𝑝

Proof of Theorem oddprmdvds
Dummy variables 𝑚 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2prm 12295 . . . 4 2 ∈ ℙ
2 pcndvds2 12488 . . . 4 ((2 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾))))
31, 2mpan 424 . . 3 (𝐾 ∈ ℕ → ¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾))))
4 pcdvds 12484 . . . 4 ((2 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (2↑(2 pCnt 𝐾)) ∥ 𝐾)
51, 4mpan 424 . . 3 (𝐾 ∈ ℕ → (2↑(2 pCnt 𝐾)) ∥ 𝐾)
6 2nn 9152 . . . . . . . . 9 2 ∈ ℕ
76a1i 9 . . . . . . . 8 (𝐾 ∈ ℕ → 2 ∈ ℕ)
81a1i 9 . . . . . . . . 9 (𝐾 ∈ ℕ → 2 ∈ ℙ)
9 id 19 . . . . . . . . 9 (𝐾 ∈ ℕ → 𝐾 ∈ ℕ)
108, 9pccld 12469 . . . . . . . 8 (𝐾 ∈ ℕ → (2 pCnt 𝐾) ∈ ℕ0)
117, 10nnexpcld 10787 . . . . . . 7 (𝐾 ∈ ℕ → (2↑(2 pCnt 𝐾)) ∈ ℕ)
12 nndivdvds 11961 . . . . . . 7 ((𝐾 ∈ ℕ ∧ (2↑(2 pCnt 𝐾)) ∈ ℕ) → ((2↑(2 pCnt 𝐾)) ∥ 𝐾 ↔ (𝐾 / (2↑(2 pCnt 𝐾))) ∈ ℕ))
1311, 12mpdan 421 . . . . . 6 (𝐾 ∈ ℕ → ((2↑(2 pCnt 𝐾)) ∥ 𝐾 ↔ (𝐾 / (2↑(2 pCnt 𝐾))) ∈ ℕ))
1413adantr 276 . . . . 5 ((𝐾 ∈ ℕ ∧ ¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))) → ((2↑(2 pCnt 𝐾)) ∥ 𝐾 ↔ (𝐾 / (2↑(2 pCnt 𝐾))) ∈ ℕ))
15 elnn1uz2 9681 . . . . . . 7 ((𝐾 / (2↑(2 pCnt 𝐾))) ∈ ℕ ↔ ((𝐾 / (2↑(2 pCnt 𝐾))) = 1 ∨ (𝐾 / (2↑(2 pCnt 𝐾))) ∈ (ℤ‘2)))
16 nncn 8998 . . . . . . . . . . . . 13 (𝐾 ∈ ℕ → 𝐾 ∈ ℂ)
1711nncnd 9004 . . . . . . . . . . . . 13 (𝐾 ∈ ℕ → (2↑(2 pCnt 𝐾)) ∈ ℂ)
1811nnap0d 9036 . . . . . . . . . . . . 13 (𝐾 ∈ ℕ → (2↑(2 pCnt 𝐾)) # 0)
1916, 17, 183jca 1179 . . . . . . . . . . . 12 (𝐾 ∈ ℕ → (𝐾 ∈ ℂ ∧ (2↑(2 pCnt 𝐾)) ∈ ℂ ∧ (2↑(2 pCnt 𝐾)) # 0))
2019adantr 276 . . . . . . . . . . 11 ((𝐾 ∈ ℕ ∧ ¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))) → (𝐾 ∈ ℂ ∧ (2↑(2 pCnt 𝐾)) ∈ ℂ ∧ (2↑(2 pCnt 𝐾)) # 0))
21 diveqap1 8732 . . . . . . . . . . 11 ((𝐾 ∈ ℂ ∧ (2↑(2 pCnt 𝐾)) ∈ ℂ ∧ (2↑(2 pCnt 𝐾)) # 0) → ((𝐾 / (2↑(2 pCnt 𝐾))) = 1 ↔ 𝐾 = (2↑(2 pCnt 𝐾))))
2220, 21syl 14 . . . . . . . . . 10 ((𝐾 ∈ ℕ ∧ ¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))) → ((𝐾 / (2↑(2 pCnt 𝐾))) = 1 ↔ 𝐾 = (2↑(2 pCnt 𝐾))))
2310adantr 276 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℕ ∧ 𝐾 = (2↑(2 pCnt 𝐾))) → (2 pCnt 𝐾) ∈ ℕ0)
24 oveq2 5930 . . . . . . . . . . . . . . . 16 (𝑛 = (2 pCnt 𝐾) → (2↑𝑛) = (2↑(2 pCnt 𝐾)))
2524eqeq2d 2208 . . . . . . . . . . . . . . 15 (𝑛 = (2 pCnt 𝐾) → (𝐾 = (2↑𝑛) ↔ 𝐾 = (2↑(2 pCnt 𝐾))))
2625adantl 277 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ ∧ 𝐾 = (2↑(2 pCnt 𝐾))) ∧ 𝑛 = (2 pCnt 𝐾)) → (𝐾 = (2↑𝑛) ↔ 𝐾 = (2↑(2 pCnt 𝐾))))
27 simpr 110 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℕ ∧ 𝐾 = (2↑(2 pCnt 𝐾))) → 𝐾 = (2↑(2 pCnt 𝐾)))
2823, 26, 27rspcedvd 2874 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ ∧ 𝐾 = (2↑(2 pCnt 𝐾))) → ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛))
2928ex 115 . . . . . . . . . . . 12 (𝐾 ∈ ℕ → (𝐾 = (2↑(2 pCnt 𝐾)) → ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛)))
30 pm2.24 622 . . . . . . . . . . . 12 (∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾))
3129, 30syl6 33 . . . . . . . . . . 11 (𝐾 ∈ ℕ → (𝐾 = (2↑(2 pCnt 𝐾)) → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾)))
3231adantr 276 . . . . . . . . . 10 ((𝐾 ∈ ℕ ∧ ¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))) → (𝐾 = (2↑(2 pCnt 𝐾)) → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾)))
3322, 32sylbid 150 . . . . . . . . 9 ((𝐾 ∈ ℕ ∧ ¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))) → ((𝐾 / (2↑(2 pCnt 𝐾))) = 1 → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾)))
3433com12 30 . . . . . . . 8 ((𝐾 / (2↑(2 pCnt 𝐾))) = 1 → ((𝐾 ∈ ℕ ∧ ¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))) → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾)))
35 exprmfct 12306 . . . . . . . . 9 ((𝐾 / (2↑(2 pCnt 𝐾))) ∈ (ℤ‘2) → ∃𝑞 ∈ ℙ 𝑞 ∥ (𝐾 / (2↑(2 pCnt 𝐾))))
36 breq1 4036 . . . . . . . . . . . . . . . . 17 (𝑞 = 2 → (𝑞 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) ↔ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))))
3736biimpcd 159 . . . . . . . . . . . . . . . 16 (𝑞 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) → (𝑞 = 2 → 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))))
3837adantl 277 . . . . . . . . . . . . . . 15 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))) → (𝑞 = 2 → 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))))
3938necon3bd 2410 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))) → (¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) → 𝑞 ≠ 2))
4039ex 115 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) → (𝑞 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) → (¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) → 𝑞 ≠ 2)))
41 prmnn 12278 . . . . . . . . . . . . . . 15 (𝑞 ∈ ℙ → 𝑞 ∈ ℕ)
425, 13mpbid 147 . . . . . . . . . . . . . . 15 (𝐾 ∈ ℕ → (𝐾 / (2↑(2 pCnt 𝐾))) ∈ ℕ)
43 nndivides 11962 . . . . . . . . . . . . . . 15 ((𝑞 ∈ ℕ ∧ (𝐾 / (2↑(2 pCnt 𝐾))) ∈ ℕ) → (𝑞 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) ↔ ∃𝑚 ∈ ℕ (𝑚 · 𝑞) = (𝐾 / (2↑(2 pCnt 𝐾)))))
4441, 42, 43syl2anr 290 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) → (𝑞 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) ↔ ∃𝑚 ∈ ℕ (𝑚 · 𝑞) = (𝐾 / (2↑(2 pCnt 𝐾)))))
45 eqcom 2198 . . . . . . . . . . . . . . . . 17 ((𝑚 · 𝑞) = (𝐾 / (2↑(2 pCnt 𝐾))) ↔ (𝐾 / (2↑(2 pCnt 𝐾))) = (𝑚 · 𝑞))
4616ad2antrr 488 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → 𝐾 ∈ ℂ)
47 simpr 110 . . . . . . . . . . . . . . . . . . . 20 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℕ)
4841ad2antlr 489 . . . . . . . . . . . . . . . . . . . 20 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → 𝑞 ∈ ℕ)
4947, 48nnmulcld 9039 . . . . . . . . . . . . . . . . . . 19 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → (𝑚 · 𝑞) ∈ ℕ)
5049nncnd 9004 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → (𝑚 · 𝑞) ∈ ℂ)
5117, 18jca 306 . . . . . . . . . . . . . . . . . . 19 (𝐾 ∈ ℕ → ((2↑(2 pCnt 𝐾)) ∈ ℂ ∧ (2↑(2 pCnt 𝐾)) # 0))
5251ad2antrr 488 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → ((2↑(2 pCnt 𝐾)) ∈ ℂ ∧ (2↑(2 pCnt 𝐾)) # 0))
53 divmulap 8702 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ ℂ ∧ (𝑚 · 𝑞) ∈ ℂ ∧ ((2↑(2 pCnt 𝐾)) ∈ ℂ ∧ (2↑(2 pCnt 𝐾)) # 0)) → ((𝐾 / (2↑(2 pCnt 𝐾))) = (𝑚 · 𝑞) ↔ ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)) = 𝐾))
5446, 50, 52, 53syl3anc 1249 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → ((𝐾 / (2↑(2 pCnt 𝐾))) = (𝑚 · 𝑞) ↔ ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)) = 𝐾))
5545, 54bitrid 192 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → ((𝑚 · 𝑞) = (𝐾 / (2↑(2 pCnt 𝐾))) ↔ ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)) = 𝐾))
56 simpr 110 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) → 𝑞 ∈ ℙ)
5756adantr 276 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → 𝑞 ∈ ℙ)
5857anim1i 340 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) ∧ 𝑞 ≠ 2) → (𝑞 ∈ ℙ ∧ 𝑞 ≠ 2))
59 eldifsn 3749 . . . . . . . . . . . . . . . . . . . . . 22 (𝑞 ∈ (ℙ ∖ {2}) ↔ (𝑞 ∈ ℙ ∧ 𝑞 ≠ 2))
6058, 59sylibr 134 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) ∧ 𝑞 ≠ 2) → 𝑞 ∈ (ℙ ∖ {2}))
6160adantr 276 . . . . . . . . . . . . . . . . . . . 20 (((((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) ∧ 𝑞 ≠ 2) ∧ ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)) = 𝐾) → 𝑞 ∈ (ℙ ∖ {2}))
62 breq1 4036 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 = 𝑞 → (𝑝𝐾𝑞𝐾))
6362adantl 277 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) ∧ 𝑞 ≠ 2) ∧ ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)) = 𝐾) ∧ 𝑝 = 𝑞) → (𝑝𝐾𝑞𝐾))
6411ad2antrr 488 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → (2↑(2 pCnt 𝐾)) ∈ ℕ)
6564, 47nnmulcld 9039 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → ((2↑(2 pCnt 𝐾)) · 𝑚) ∈ ℕ)
6665nnzd 9447 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → ((2↑(2 pCnt 𝐾)) · 𝑚) ∈ ℤ)
6741nnzd 9447 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑞 ∈ ℙ → 𝑞 ∈ ℤ)
6867ad2antlr 489 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → 𝑞 ∈ ℤ)
6966, 68jca 306 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → (((2↑(2 pCnt 𝐾)) · 𝑚) ∈ ℤ ∧ 𝑞 ∈ ℤ))
7069adantr 276 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) ∧ 𝑞 ≠ 2) → (((2↑(2 pCnt 𝐾)) · 𝑚) ∈ ℤ ∧ 𝑞 ∈ ℤ))
71 dvdsmul2 11979 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((2↑(2 pCnt 𝐾)) · 𝑚) ∈ ℤ ∧ 𝑞 ∈ ℤ) → 𝑞 ∥ (((2↑(2 pCnt 𝐾)) · 𝑚) · 𝑞))
7270, 71syl 14 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) ∧ 𝑞 ≠ 2) → 𝑞 ∥ (((2↑(2 pCnt 𝐾)) · 𝑚) · 𝑞))
73 2nn0 9266 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2 ∈ ℕ0
7473a1i 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐾 ∈ ℕ → 2 ∈ ℕ0)
7574, 10nn0expcld 10788 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐾 ∈ ℕ → (2↑(2 pCnt 𝐾)) ∈ ℕ0)
7675ad2antrr 488 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → (2↑(2 pCnt 𝐾)) ∈ ℕ0)
7776nn0cnd 9304 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → (2↑(2 pCnt 𝐾)) ∈ ℂ)
78 nncn 8998 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑚 ∈ ℕ → 𝑚 ∈ ℂ)
7978adantl 277 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℂ)
8041nncnd 9004 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑞 ∈ ℙ → 𝑞 ∈ ℂ)
8180ad2antlr 489 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → 𝑞 ∈ ℂ)
8277, 79, 813jca 1179 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → ((2↑(2 pCnt 𝐾)) ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑞 ∈ ℂ))
8382adantr 276 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) ∧ 𝑞 ≠ 2) → ((2↑(2 pCnt 𝐾)) ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑞 ∈ ℂ))
84 mulass 8010 . . . . . . . . . . . . . . . . . . . . . . . 24 (((2↑(2 pCnt 𝐾)) ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑞 ∈ ℂ) → (((2↑(2 pCnt 𝐾)) · 𝑚) · 𝑞) = ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)))
8583, 84syl 14 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) ∧ 𝑞 ≠ 2) → (((2↑(2 pCnt 𝐾)) · 𝑚) · 𝑞) = ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)))
8672, 85breqtrd 4059 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) ∧ 𝑞 ≠ 2) → 𝑞 ∥ ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)))
8786adantr 276 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) ∧ 𝑞 ≠ 2) ∧ ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)) = 𝐾) → 𝑞 ∥ ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)))
88 breq2 4037 . . . . . . . . . . . . . . . . . . . . . 22 (((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)) = 𝐾 → (𝑞 ∥ ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)) ↔ 𝑞𝐾))
8988adantl 277 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) ∧ 𝑞 ≠ 2) ∧ ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)) = 𝐾) → (𝑞 ∥ ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)) ↔ 𝑞𝐾))
9087, 89mpbid 147 . . . . . . . . . . . . . . . . . . . 20 (((((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) ∧ 𝑞 ≠ 2) ∧ ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)) = 𝐾) → 𝑞𝐾)
9161, 63, 90rspcedvd 2874 . . . . . . . . . . . . . . . . . . 19 (((((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) ∧ 𝑞 ≠ 2) ∧ ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)) = 𝐾) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾)
9291a1d 22 . . . . . . . . . . . . . . . . . 18 (((((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) ∧ 𝑞 ≠ 2) ∧ ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)) = 𝐾) → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾))
9392exp31 364 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → (𝑞 ≠ 2 → (((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)) = 𝐾 → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾))))
9493com23 78 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → (((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)) = 𝐾 → (𝑞 ≠ 2 → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾))))
9555, 94sylbid 150 . . . . . . . . . . . . . . 15 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → ((𝑚 · 𝑞) = (𝐾 / (2↑(2 pCnt 𝐾))) → (𝑞 ≠ 2 → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾))))
9695rexlimdva 2614 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) → (∃𝑚 ∈ ℕ (𝑚 · 𝑞) = (𝐾 / (2↑(2 pCnt 𝐾))) → (𝑞 ≠ 2 → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾))))
9744, 96sylbid 150 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) → (𝑞 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) → (𝑞 ≠ 2 → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾))))
9840, 97syldd 67 . . . . . . . . . . . 12 ((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) → (𝑞 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) → (¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾))))
9998rexlimdva 2614 . . . . . . . . . . 11 (𝐾 ∈ ℕ → (∃𝑞 ∈ ℙ 𝑞 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) → (¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾))))
10099com12 30 . . . . . . . . . 10 (∃𝑞 ∈ ℙ 𝑞 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) → (𝐾 ∈ ℕ → (¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾))))
101100impd 254 . . . . . . . . 9 (∃𝑞 ∈ ℙ 𝑞 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) → ((𝐾 ∈ ℕ ∧ ¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))) → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾)))
10235, 101syl 14 . . . . . . . 8 ((𝐾 / (2↑(2 pCnt 𝐾))) ∈ (ℤ‘2) → ((𝐾 ∈ ℕ ∧ ¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))) → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾)))
10334, 102jaoi 717 . . . . . . 7 (((𝐾 / (2↑(2 pCnt 𝐾))) = 1 ∨ (𝐾 / (2↑(2 pCnt 𝐾))) ∈ (ℤ‘2)) → ((𝐾 ∈ ℕ ∧ ¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))) → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾)))
10415, 103sylbi 121 . . . . . 6 ((𝐾 / (2↑(2 pCnt 𝐾))) ∈ ℕ → ((𝐾 ∈ ℕ ∧ ¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))) → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾)))
105104com12 30 . . . . 5 ((𝐾 ∈ ℕ ∧ ¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))) → ((𝐾 / (2↑(2 pCnt 𝐾))) ∈ ℕ → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾)))
10614, 105sylbid 150 . . . 4 ((𝐾 ∈ ℕ ∧ ¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))) → ((2↑(2 pCnt 𝐾)) ∥ 𝐾 → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾)))
107106ex 115 . . 3 (𝐾 ∈ ℕ → (¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) → ((2↑(2 pCnt 𝐾)) ∥ 𝐾 → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾))))
1083, 5, 107mp2d 47 . 2 (𝐾 ∈ ℕ → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾))
109108imp 124 1 ((𝐾 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛)) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  w3a 980   = wceq 1364  wcel 2167  wne 2367  wrex 2476  cdif 3154  {csn 3622   class class class wbr 4033  cfv 5258  (class class class)co 5922  cc 7877  0cc0 7879  1c1 7880   · cmul 7884   # cap 8608   / cdiv 8699  cn 8990  2c2 9041  0cn0 9249  cz 9326  cuz 9601  cexp 10630  cdvds 11952  cprime 12275   pCnt cpc 12453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-1o 6474  df-2o 6475  df-er 6592  df-en 6800  df-sup 7050  df-inf 7051  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fz 10084  df-fzo 10218  df-fl 10360  df-mod 10415  df-seqfrec 10540  df-exp 10631  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-dvds 11953  df-gcd 12121  df-prm 12276  df-pc 12454
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator