ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prloc GIF version

Theorem prloc 7029
Description: A Dedekind cut is located. (Contributed by Jim Kingdon, 23-Oct-2019.)
Assertion
Ref Expression
prloc ((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) → (𝐴𝐿𝐵𝑈))

Proof of Theorem prloc
Dummy variables 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elinp 7012 . . . 4 (⟨𝐿, 𝑈⟩ ∈ P ↔ (((𝐿Q𝑈Q) ∧ (∃𝑞Q 𝑞𝐿 ∧ ∃𝑟Q 𝑟𝑈)) ∧ ((∀𝑞Q (𝑞𝐿 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝐿)) ∧ ∀𝑟Q (𝑟𝑈 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑈))) ∧ ∀𝑞Q ¬ (𝑞𝐿𝑞𝑈) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝐿𝑟𝑈)))))
2 simpr3 951 . . . 4 ((((𝐿Q𝑈Q) ∧ (∃𝑞Q 𝑞𝐿 ∧ ∃𝑟Q 𝑟𝑈)) ∧ ((∀𝑞Q (𝑞𝐿 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝐿)) ∧ ∀𝑟Q (𝑟𝑈 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑈))) ∧ ∀𝑞Q ¬ (𝑞𝐿𝑞𝑈) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝐿𝑟𝑈)))) → ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝐿𝑟𝑈)))
31, 2sylbi 119 . . 3 (⟨𝐿, 𝑈⟩ ∈ P → ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝐿𝑟𝑈)))
43adantr 270 . 2 ((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) → ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝐿𝑟𝑈)))
5 simpr 108 . 2 ((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) → 𝐴 <Q 𝐵)
6 ltrelnq 6903 . . . . . . 7 <Q ⊆ (Q × Q)
76brel 4478 . . . . . 6 (𝐴 <Q 𝐵 → (𝐴Q𝐵Q))
87simpld 110 . . . . 5 (𝐴 <Q 𝐵𝐴Q)
98adantl 271 . . . 4 ((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) → 𝐴Q)
10 simpr 108 . . . . . . 7 (((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ 𝑞 = 𝐴) → 𝑞 = 𝐴)
1110breq1d 3847 . . . . . 6 (((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ 𝑞 = 𝐴) → (𝑞 <Q 𝑟𝐴 <Q 𝑟))
1210eleq1d 2156 . . . . . . 7 (((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ 𝑞 = 𝐴) → (𝑞𝐿𝐴𝐿))
1312orbi1d 740 . . . . . 6 (((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ 𝑞 = 𝐴) → ((𝑞𝐿𝑟𝑈) ↔ (𝐴𝐿𝑟𝑈)))
1411, 13imbi12d 232 . . . . 5 (((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ 𝑞 = 𝐴) → ((𝑞 <Q 𝑟 → (𝑞𝐿𝑟𝑈)) ↔ (𝐴 <Q 𝑟 → (𝐴𝐿𝑟𝑈))))
1514ralbidv 2380 . . . 4 (((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ 𝑞 = 𝐴) → (∀𝑟Q (𝑞 <Q 𝑟 → (𝑞𝐿𝑟𝑈)) ↔ ∀𝑟Q (𝐴 <Q 𝑟 → (𝐴𝐿𝑟𝑈))))
169, 15rspcdv 2725 . . 3 ((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) → (∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝐿𝑟𝑈)) → ∀𝑟Q (𝐴 <Q 𝑟 → (𝐴𝐿𝑟𝑈))))
177simprd 112 . . . . 5 (𝐴 <Q 𝐵𝐵Q)
1817adantl 271 . . . 4 ((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) → 𝐵Q)
19 simpr 108 . . . . . 6 (((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ 𝑟 = 𝐵) → 𝑟 = 𝐵)
2019breq2d 3849 . . . . 5 (((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ 𝑟 = 𝐵) → (𝐴 <Q 𝑟𝐴 <Q 𝐵))
2119eleq1d 2156 . . . . . 6 (((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ 𝑟 = 𝐵) → (𝑟𝑈𝐵𝑈))
2221orbi2d 739 . . . . 5 (((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ 𝑟 = 𝐵) → ((𝐴𝐿𝑟𝑈) ↔ (𝐴𝐿𝐵𝑈)))
2320, 22imbi12d 232 . . . 4 (((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ 𝑟 = 𝐵) → ((𝐴 <Q 𝑟 → (𝐴𝐿𝑟𝑈)) ↔ (𝐴 <Q 𝐵 → (𝐴𝐿𝐵𝑈))))
2418, 23rspcdv 2725 . . 3 ((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) → (∀𝑟Q (𝐴 <Q 𝑟 → (𝐴𝐿𝑟𝑈)) → (𝐴 <Q 𝐵 → (𝐴𝐿𝐵𝑈))))
2516, 24syld 44 . 2 ((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) → (∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝐿𝑟𝑈)) → (𝐴 <Q 𝐵 → (𝐴𝐿𝐵𝑈))))
264, 5, 25mp2d 46 1 ((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) → (𝐴𝐿𝐵𝑈))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103  wo 664  w3a 924   = wceq 1289  wcel 1438  wral 2359  wrex 2360  wss 2997  cop 3444   class class class wbr 3837  Qcnq 6818   <Q cltq 6823  Pcnp 6829
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3946  ax-sep 3949  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-iinf 4393
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2839  df-csb 2932  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-int 3684  df-iun 3727  df-br 3838  df-opab 3892  df-mpt 3893  df-id 4111  df-iom 4396  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441  df-iota 4967  df-fun 5004  df-fn 5005  df-f 5006  df-f1 5007  df-fo 5008  df-f1o 5009  df-fv 5010  df-qs 6278  df-ni 6842  df-nqqs 6886  df-ltnqqs 6891  df-inp 7004
This theorem is referenced by:  prarloclem3step  7034  addnqprlemfl  7097  addnqprlemfu  7098  mullocprlem  7108  mulnqprlemfl  7113  mulnqprlemfu  7114  ltsopr  7134  ltexprlemloc  7145  addcanprleml  7152  addcanprlemu  7153  recexprlemloc  7169  cauappcvgprlemladdru  7194  cauappcvgprlemladdrl  7195  caucvgprlemladdrl  7216
  Copyright terms: Public domain W3C validator