ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prloc GIF version

Theorem prloc 7604
Description: A Dedekind cut is located. (Contributed by Jim Kingdon, 23-Oct-2019.)
Assertion
Ref Expression
prloc ((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) → (𝐴𝐿𝐵𝑈))

Proof of Theorem prloc
Dummy variables 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elinp 7587 . . . 4 (⟨𝐿, 𝑈⟩ ∈ P ↔ (((𝐿Q𝑈Q) ∧ (∃𝑞Q 𝑞𝐿 ∧ ∃𝑟Q 𝑟𝑈)) ∧ ((∀𝑞Q (𝑞𝐿 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝐿)) ∧ ∀𝑟Q (𝑟𝑈 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑈))) ∧ ∀𝑞Q ¬ (𝑞𝐿𝑞𝑈) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝐿𝑟𝑈)))))
2 simpr3 1008 . . . 4 ((((𝐿Q𝑈Q) ∧ (∃𝑞Q 𝑞𝐿 ∧ ∃𝑟Q 𝑟𝑈)) ∧ ((∀𝑞Q (𝑞𝐿 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝐿)) ∧ ∀𝑟Q (𝑟𝑈 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑈))) ∧ ∀𝑞Q ¬ (𝑞𝐿𝑞𝑈) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝐿𝑟𝑈)))) → ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝐿𝑟𝑈)))
31, 2sylbi 121 . . 3 (⟨𝐿, 𝑈⟩ ∈ P → ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝐿𝑟𝑈)))
43adantr 276 . 2 ((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) → ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝐿𝑟𝑈)))
5 simpr 110 . 2 ((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) → 𝐴 <Q 𝐵)
6 ltrelnq 7478 . . . . . . 7 <Q ⊆ (Q × Q)
76brel 4727 . . . . . 6 (𝐴 <Q 𝐵 → (𝐴Q𝐵Q))
87simpld 112 . . . . 5 (𝐴 <Q 𝐵𝐴Q)
98adantl 277 . . . 4 ((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) → 𝐴Q)
10 simpr 110 . . . . . . 7 (((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ 𝑞 = 𝐴) → 𝑞 = 𝐴)
1110breq1d 4054 . . . . . 6 (((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ 𝑞 = 𝐴) → (𝑞 <Q 𝑟𝐴 <Q 𝑟))
1210eleq1d 2274 . . . . . . 7 (((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ 𝑞 = 𝐴) → (𝑞𝐿𝐴𝐿))
1312orbi1d 793 . . . . . 6 (((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ 𝑞 = 𝐴) → ((𝑞𝐿𝑟𝑈) ↔ (𝐴𝐿𝑟𝑈)))
1411, 13imbi12d 234 . . . . 5 (((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ 𝑞 = 𝐴) → ((𝑞 <Q 𝑟 → (𝑞𝐿𝑟𝑈)) ↔ (𝐴 <Q 𝑟 → (𝐴𝐿𝑟𝑈))))
1514ralbidv 2506 . . . 4 (((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ 𝑞 = 𝐴) → (∀𝑟Q (𝑞 <Q 𝑟 → (𝑞𝐿𝑟𝑈)) ↔ ∀𝑟Q (𝐴 <Q 𝑟 → (𝐴𝐿𝑟𝑈))))
169, 15rspcdv 2880 . . 3 ((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) → (∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝐿𝑟𝑈)) → ∀𝑟Q (𝐴 <Q 𝑟 → (𝐴𝐿𝑟𝑈))))
177simprd 114 . . . . 5 (𝐴 <Q 𝐵𝐵Q)
1817adantl 277 . . . 4 ((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) → 𝐵Q)
19 simpr 110 . . . . . 6 (((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ 𝑟 = 𝐵) → 𝑟 = 𝐵)
2019breq2d 4056 . . . . 5 (((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ 𝑟 = 𝐵) → (𝐴 <Q 𝑟𝐴 <Q 𝐵))
2119eleq1d 2274 . . . . . 6 (((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ 𝑟 = 𝐵) → (𝑟𝑈𝐵𝑈))
2221orbi2d 792 . . . . 5 (((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ 𝑟 = 𝐵) → ((𝐴𝐿𝑟𝑈) ↔ (𝐴𝐿𝐵𝑈)))
2320, 22imbi12d 234 . . . 4 (((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ 𝑟 = 𝐵) → ((𝐴 <Q 𝑟 → (𝐴𝐿𝑟𝑈)) ↔ (𝐴 <Q 𝐵 → (𝐴𝐿𝐵𝑈))))
2418, 23rspcdv 2880 . . 3 ((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) → (∀𝑟Q (𝐴 <Q 𝑟 → (𝐴𝐿𝑟𝑈)) → (𝐴 <Q 𝐵 → (𝐴𝐿𝐵𝑈))))
2516, 24syld 45 . 2 ((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) → (∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝐿𝑟𝑈)) → (𝐴 <Q 𝐵 → (𝐴𝐿𝐵𝑈))))
264, 5, 25mp2d 47 1 ((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) → (𝐴𝐿𝐵𝑈))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 710  w3a 981   = wceq 1373  wcel 2176  wral 2484  wrex 2485  wss 3166  cop 3636   class class class wbr 4044  Qcnq 7393   <Q cltq 7398  Pcnp 7404
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-iinf 4636
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-qs 6626  df-ni 7417  df-nqqs 7461  df-ltnqqs 7466  df-inp 7579
This theorem is referenced by:  prarloclem3step  7609  addnqprlemfl  7672  addnqprlemfu  7673  mullocprlem  7683  mulnqprlemfl  7688  mulnqprlemfu  7689  ltsopr  7709  ltexprlemloc  7720  addcanprleml  7727  addcanprlemu  7728  recexprlemloc  7744  cauappcvgprlemladdru  7769  cauappcvgprlemladdrl  7770  caucvgprlemladdrl  7791
  Copyright terms: Public domain W3C validator