ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prloc GIF version

Theorem prloc 7481
Description: A Dedekind cut is located. (Contributed by Jim Kingdon, 23-Oct-2019.)
Assertion
Ref Expression
prloc ((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) → (𝐴𝐿𝐵𝑈))

Proof of Theorem prloc
Dummy variables 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elinp 7464 . . . 4 (⟨𝐿, 𝑈⟩ ∈ P ↔ (((𝐿Q𝑈Q) ∧ (∃𝑞Q 𝑞𝐿 ∧ ∃𝑟Q 𝑟𝑈)) ∧ ((∀𝑞Q (𝑞𝐿 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝐿)) ∧ ∀𝑟Q (𝑟𝑈 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑈))) ∧ ∀𝑞Q ¬ (𝑞𝐿𝑞𝑈) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝐿𝑟𝑈)))))
2 simpr3 1005 . . . 4 ((((𝐿Q𝑈Q) ∧ (∃𝑞Q 𝑞𝐿 ∧ ∃𝑟Q 𝑟𝑈)) ∧ ((∀𝑞Q (𝑞𝐿 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝐿)) ∧ ∀𝑟Q (𝑟𝑈 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑈))) ∧ ∀𝑞Q ¬ (𝑞𝐿𝑞𝑈) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝐿𝑟𝑈)))) → ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝐿𝑟𝑈)))
31, 2sylbi 121 . . 3 (⟨𝐿, 𝑈⟩ ∈ P → ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝐿𝑟𝑈)))
43adantr 276 . 2 ((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) → ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝐿𝑟𝑈)))
5 simpr 110 . 2 ((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) → 𝐴 <Q 𝐵)
6 ltrelnq 7355 . . . . . . 7 <Q ⊆ (Q × Q)
76brel 4675 . . . . . 6 (𝐴 <Q 𝐵 → (𝐴Q𝐵Q))
87simpld 112 . . . . 5 (𝐴 <Q 𝐵𝐴Q)
98adantl 277 . . . 4 ((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) → 𝐴Q)
10 simpr 110 . . . . . . 7 (((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ 𝑞 = 𝐴) → 𝑞 = 𝐴)
1110breq1d 4010 . . . . . 6 (((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ 𝑞 = 𝐴) → (𝑞 <Q 𝑟𝐴 <Q 𝑟))
1210eleq1d 2246 . . . . . . 7 (((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ 𝑞 = 𝐴) → (𝑞𝐿𝐴𝐿))
1312orbi1d 791 . . . . . 6 (((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ 𝑞 = 𝐴) → ((𝑞𝐿𝑟𝑈) ↔ (𝐴𝐿𝑟𝑈)))
1411, 13imbi12d 234 . . . . 5 (((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ 𝑞 = 𝐴) → ((𝑞 <Q 𝑟 → (𝑞𝐿𝑟𝑈)) ↔ (𝐴 <Q 𝑟 → (𝐴𝐿𝑟𝑈))))
1514ralbidv 2477 . . . 4 (((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ 𝑞 = 𝐴) → (∀𝑟Q (𝑞 <Q 𝑟 → (𝑞𝐿𝑟𝑈)) ↔ ∀𝑟Q (𝐴 <Q 𝑟 → (𝐴𝐿𝑟𝑈))))
169, 15rspcdv 2844 . . 3 ((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) → (∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝐿𝑟𝑈)) → ∀𝑟Q (𝐴 <Q 𝑟 → (𝐴𝐿𝑟𝑈))))
177simprd 114 . . . . 5 (𝐴 <Q 𝐵𝐵Q)
1817adantl 277 . . . 4 ((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) → 𝐵Q)
19 simpr 110 . . . . . 6 (((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ 𝑟 = 𝐵) → 𝑟 = 𝐵)
2019breq2d 4012 . . . . 5 (((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ 𝑟 = 𝐵) → (𝐴 <Q 𝑟𝐴 <Q 𝐵))
2119eleq1d 2246 . . . . . 6 (((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ 𝑟 = 𝐵) → (𝑟𝑈𝐵𝑈))
2221orbi2d 790 . . . . 5 (((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ 𝑟 = 𝐵) → ((𝐴𝐿𝑟𝑈) ↔ (𝐴𝐿𝐵𝑈)))
2320, 22imbi12d 234 . . . 4 (((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ 𝑟 = 𝐵) → ((𝐴 <Q 𝑟 → (𝐴𝐿𝑟𝑈)) ↔ (𝐴 <Q 𝐵 → (𝐴𝐿𝐵𝑈))))
2418, 23rspcdv 2844 . . 3 ((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) → (∀𝑟Q (𝐴 <Q 𝑟 → (𝐴𝐿𝑟𝑈)) → (𝐴 <Q 𝐵 → (𝐴𝐿𝐵𝑈))))
2516, 24syld 45 . 2 ((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) → (∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝐿𝑟𝑈)) → (𝐴 <Q 𝐵 → (𝐴𝐿𝐵𝑈))))
264, 5, 25mp2d 47 1 ((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) → (𝐴𝐿𝐵𝑈))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 708  w3a 978   = wceq 1353  wcel 2148  wral 2455  wrex 2456  wss 3129  cop 3594   class class class wbr 4000  Qcnq 7270   <Q cltq 7275  Pcnp 7281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-iinf 4584
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4290  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-qs 6535  df-ni 7294  df-nqqs 7338  df-ltnqqs 7343  df-inp 7456
This theorem is referenced by:  prarloclem3step  7486  addnqprlemfl  7549  addnqprlemfu  7550  mullocprlem  7560  mulnqprlemfl  7565  mulnqprlemfu  7566  ltsopr  7586  ltexprlemloc  7597  addcanprleml  7604  addcanprlemu  7605  recexprlemloc  7621  cauappcvgprlemladdru  7646  cauappcvgprlemladdrl  7647  caucvgprlemladdrl  7668
  Copyright terms: Public domain W3C validator