ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-mpo GIF version

Definition df-mpo 5956
Description: Define maps-to notation for defining an operation via a rule. Read as "the operation defined by the map from 𝑥, 𝑦 (in 𝐴 × 𝐵) to 𝐵(𝑥, 𝑦)". An extension of df-mpt 4111 for two arguments. (Contributed by NM, 17-Feb-2008.)
Assertion
Ref Expression
df-mpo (𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧   𝑧,𝐴   𝑧,𝐵   𝑧,𝐶
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)

Detailed syntax breakdown of Definition df-mpo
StepHypRef Expression
1 vx . . 3 setvar 𝑥
2 vy . . 3 setvar 𝑦
3 cA . . 3 class 𝐴
4 cB . . 3 class 𝐵
5 cC . . 3 class 𝐶
61, 2, 3, 4, 5cmpo 5953 . 2 class (𝑥𝐴, 𝑦𝐵𝐶)
71cv 1372 . . . . . 6 class 𝑥
87, 3wcel 2177 . . . . 5 wff 𝑥𝐴
92cv 1372 . . . . . 6 class 𝑦
109, 4wcel 2177 . . . . 5 wff 𝑦𝐵
118, 10wa 104 . . . 4 wff (𝑥𝐴𝑦𝐵)
12 vz . . . . . 6 setvar 𝑧
1312cv 1372 . . . . 5 class 𝑧
1413, 5wceq 1373 . . . 4 wff 𝑧 = 𝐶
1511, 14wa 104 . . 3 wff ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)
1615, 1, 2, 12coprab 5952 . 2 class {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
176, 16wceq 1373 1 wff (𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
Colors of variables: wff set class
This definition is referenced by:  mpoeq123  6011  mpoeq123dva  6013  mpoeq3dva  6016  nfmpo1  6019  nfmpo2  6020  nfmpo  6021  mpo0  6022  cbvmpox  6030  mpov  6042  mpomptx  6043  resmpo  6050  mpofun  6054  mpo2eqb  6062  rnmpo  6063  reldmmpo  6064  ovmpt4g  6075  elmpocl  6148  fmpox  6293  f1od2  6328  tposmpo  6374  erovlem  6721  xpcomco  6928  dfplpq2  7474  dfmpq2  7475  mpomulf  8069
  Copyright terms: Public domain W3C validator