| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-mpo | GIF version | ||
| Description: Define maps-to notation for defining an operation via a rule. Read as "the operation defined by the map from 𝑥, 𝑦 (in 𝐴 × 𝐵) to 𝐵(𝑥, 𝑦)". An extension of df-mpt 4097 for two arguments. (Contributed by NM, 17-Feb-2008.) |
| Ref | Expression |
|---|---|
| df-mpo | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vx | . . 3 setvar 𝑥 | |
| 2 | vy | . . 3 setvar 𝑦 | |
| 3 | cA | . . 3 class 𝐴 | |
| 4 | cB | . . 3 class 𝐵 | |
| 5 | cC | . . 3 class 𝐶 | |
| 6 | 1, 2, 3, 4, 5 | cmpo 5927 | . 2 class (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
| 7 | 1 | cv 1363 | . . . . . 6 class 𝑥 |
| 8 | 7, 3 | wcel 2167 | . . . . 5 wff 𝑥 ∈ 𝐴 |
| 9 | 2 | cv 1363 | . . . . . 6 class 𝑦 |
| 10 | 9, 4 | wcel 2167 | . . . . 5 wff 𝑦 ∈ 𝐵 |
| 11 | 8, 10 | wa 104 | . . . 4 wff (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) |
| 12 | vz | . . . . . 6 setvar 𝑧 | |
| 13 | 12 | cv 1363 | . . . . 5 class 𝑧 |
| 14 | 13, 5 | wceq 1364 | . . . 4 wff 𝑧 = 𝐶 |
| 15 | 11, 14 | wa 104 | . . 3 wff ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶) |
| 16 | 15, 1, 2, 12 | coprab 5926 | . 2 class {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
| 17 | 6, 16 | wceq 1364 | 1 wff (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
| Colors of variables: wff set class |
| This definition is referenced by: mpoeq123 5985 mpoeq123dva 5987 mpoeq3dva 5990 nfmpo1 5993 nfmpo2 5994 nfmpo 5995 mpo0 5996 cbvmpox 6004 mpov 6016 mpomptx 6017 resmpo 6024 mpofun 6028 mpo2eqb 6036 rnmpo 6037 reldmmpo 6038 ovmpt4g 6049 elmpocl 6122 fmpox 6267 f1od2 6302 tposmpo 6348 erovlem 6695 xpcomco 6894 dfplpq2 7438 dfmpq2 7439 mpomulf 8033 |
| Copyright terms: Public domain | W3C validator |