| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-mpo | GIF version | ||
| Description: Define maps-to notation for defining an operation via a rule. Read as "the operation defined by the map from 𝑥, 𝑦 (in 𝐴 × 𝐵) to 𝐵(𝑥, 𝑦)". An extension of df-mpt 4111 for two arguments. (Contributed by NM, 17-Feb-2008.) |
| Ref | Expression |
|---|---|
| df-mpo | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vx | . . 3 setvar 𝑥 | |
| 2 | vy | . . 3 setvar 𝑦 | |
| 3 | cA | . . 3 class 𝐴 | |
| 4 | cB | . . 3 class 𝐵 | |
| 5 | cC | . . 3 class 𝐶 | |
| 6 | 1, 2, 3, 4, 5 | cmpo 5953 | . 2 class (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
| 7 | 1 | cv 1372 | . . . . . 6 class 𝑥 |
| 8 | 7, 3 | wcel 2177 | . . . . 5 wff 𝑥 ∈ 𝐴 |
| 9 | 2 | cv 1372 | . . . . . 6 class 𝑦 |
| 10 | 9, 4 | wcel 2177 | . . . . 5 wff 𝑦 ∈ 𝐵 |
| 11 | 8, 10 | wa 104 | . . . 4 wff (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) |
| 12 | vz | . . . . . 6 setvar 𝑧 | |
| 13 | 12 | cv 1372 | . . . . 5 class 𝑧 |
| 14 | 13, 5 | wceq 1373 | . . . 4 wff 𝑧 = 𝐶 |
| 15 | 11, 14 | wa 104 | . . 3 wff ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶) |
| 16 | 15, 1, 2, 12 | coprab 5952 | . 2 class {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
| 17 | 6, 16 | wceq 1373 | 1 wff (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
| Colors of variables: wff set class |
| This definition is referenced by: mpoeq123 6011 mpoeq123dva 6013 mpoeq3dva 6016 nfmpo1 6019 nfmpo2 6020 nfmpo 6021 mpo0 6022 cbvmpox 6030 mpov 6042 mpomptx 6043 resmpo 6050 mpofun 6054 mpo2eqb 6062 rnmpo 6063 reldmmpo 6064 ovmpt4g 6075 elmpocl 6148 fmpox 6293 f1od2 6328 tposmpo 6374 erovlem 6721 xpcomco 6928 dfplpq2 7474 dfmpq2 7475 mpomulf 8069 |
| Copyright terms: Public domain | W3C validator |