ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-mpo GIF version

Definition df-mpo 6012
Description: Define maps-to notation for defining an operation via a rule. Read as "the operation defined by the map from 𝑥, 𝑦 (in 𝐴 × 𝐵) to 𝐵(𝑥, 𝑦)". An extension of df-mpt 4147 for two arguments. (Contributed by NM, 17-Feb-2008.)
Assertion
Ref Expression
df-mpo (𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧   𝑧,𝐴   𝑧,𝐵   𝑧,𝐶
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)

Detailed syntax breakdown of Definition df-mpo
StepHypRef Expression
1 vx . . 3 setvar 𝑥
2 vy . . 3 setvar 𝑦
3 cA . . 3 class 𝐴
4 cB . . 3 class 𝐵
5 cC . . 3 class 𝐶
61, 2, 3, 4, 5cmpo 6009 . 2 class (𝑥𝐴, 𝑦𝐵𝐶)
71cv 1394 . . . . . 6 class 𝑥
87, 3wcel 2200 . . . . 5 wff 𝑥𝐴
92cv 1394 . . . . . 6 class 𝑦
109, 4wcel 2200 . . . . 5 wff 𝑦𝐵
118, 10wa 104 . . . 4 wff (𝑥𝐴𝑦𝐵)
12 vz . . . . . 6 setvar 𝑧
1312cv 1394 . . . . 5 class 𝑧
1413, 5wceq 1395 . . . 4 wff 𝑧 = 𝐶
1511, 14wa 104 . . 3 wff ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)
1615, 1, 2, 12coprab 6008 . 2 class {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
176, 16wceq 1395 1 wff (𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
Colors of variables: wff set class
This definition is referenced by:  mpoeq123  6069  mpoeq123dva  6071  mpoeq3dva  6074  nfmpo1  6077  nfmpo2  6078  nfmpo  6079  mpo0  6080  cbvmpox  6088  mpov  6100  mpomptx  6101  resmpo  6108  mpofun  6112  mpo2eqb  6120  rnmpo  6121  reldmmpo  6122  ovmpt4g  6133  elmpocl  6206  fmpox  6352  f1od2  6387  tposmpo  6433  erovlem  6782  xpcomco  6993  dfplpq2  7549  dfmpq2  7550  mpomulf  8144
  Copyright terms: Public domain W3C validator