ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-mpo GIF version

Definition df-mpo 5882
Description: Define maps-to notation for defining an operation via a rule. Read as "the operation defined by the map from 𝑥, 𝑦 (in 𝐴 × 𝐵) to 𝐵(𝑥, 𝑦)". An extension of df-mpt 4068 for two arguments. (Contributed by NM, 17-Feb-2008.)
Assertion
Ref Expression
df-mpo (𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧   𝑧,𝐴   𝑧,𝐵   𝑧,𝐶
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)

Detailed syntax breakdown of Definition df-mpo
StepHypRef Expression
1 vx . . 3 setvar 𝑥
2 vy . . 3 setvar 𝑦
3 cA . . 3 class 𝐴
4 cB . . 3 class 𝐵
5 cC . . 3 class 𝐶
61, 2, 3, 4, 5cmpo 5879 . 2 class (𝑥𝐴, 𝑦𝐵𝐶)
71cv 1352 . . . . . 6 class 𝑥
87, 3wcel 2148 . . . . 5 wff 𝑥𝐴
92cv 1352 . . . . . 6 class 𝑦
109, 4wcel 2148 . . . . 5 wff 𝑦𝐵
118, 10wa 104 . . . 4 wff (𝑥𝐴𝑦𝐵)
12 vz . . . . . 6 setvar 𝑧
1312cv 1352 . . . . 5 class 𝑧
1413, 5wceq 1353 . . . 4 wff 𝑧 = 𝐶
1511, 14wa 104 . . 3 wff ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)
1615, 1, 2, 12coprab 5878 . 2 class {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
176, 16wceq 1353 1 wff (𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
Colors of variables: wff set class
This definition is referenced by:  mpoeq123  5936  mpoeq123dva  5938  mpoeq3dva  5941  nfmpo1  5944  nfmpo2  5945  nfmpo  5946  mpo0  5947  cbvmpox  5955  mpov  5967  mpomptx  5968  resmpo  5975  mpofun  5979  mpo2eqb  5986  rnmpo  5987  reldmmpo  5988  ovmpt4g  5999  elmpocl  6071  fmpox  6203  f1od2  6238  tposmpo  6284  erovlem  6629  xpcomco  6828  dfplpq2  7355  dfmpq2  7356
  Copyright terms: Public domain W3C validator