Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-mpo | GIF version |
Description: Define maps-to notation for defining an operation via a rule. Read as "the operation defined by the map from 𝑥, 𝑦 (in 𝐴 × 𝐵) to 𝐵(𝑥, 𝑦)". An extension of df-mpt 4061 for two arguments. (Contributed by NM, 17-Feb-2008.) |
Ref | Expression |
---|---|
df-mpo | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vx | . . 3 setvar 𝑥 | |
2 | vy | . . 3 setvar 𝑦 | |
3 | cA | . . 3 class 𝐴 | |
4 | cB | . . 3 class 𝐵 | |
5 | cC | . . 3 class 𝐶 | |
6 | 1, 2, 3, 4, 5 | cmpo 5867 | . 2 class (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
7 | 1 | cv 1352 | . . . . . 6 class 𝑥 |
8 | 7, 3 | wcel 2146 | . . . . 5 wff 𝑥 ∈ 𝐴 |
9 | 2 | cv 1352 | . . . . . 6 class 𝑦 |
10 | 9, 4 | wcel 2146 | . . . . 5 wff 𝑦 ∈ 𝐵 |
11 | 8, 10 | wa 104 | . . . 4 wff (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) |
12 | vz | . . . . . 6 setvar 𝑧 | |
13 | 12 | cv 1352 | . . . . 5 class 𝑧 |
14 | 13, 5 | wceq 1353 | . . . 4 wff 𝑧 = 𝐶 |
15 | 11, 14 | wa 104 | . . 3 wff ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶) |
16 | 15, 1, 2, 12 | coprab 5866 | . 2 class {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
17 | 6, 16 | wceq 1353 | 1 wff (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
Colors of variables: wff set class |
This definition is referenced by: mpoeq123 5924 mpoeq123dva 5926 mpoeq3dva 5929 nfmpo1 5932 nfmpo2 5933 nfmpo 5934 mpo0 5935 cbvmpox 5943 mpov 5955 mpomptx 5956 resmpo 5963 mpofun 5967 mpo2eqb 5974 rnmpo 5975 reldmmpo 5976 ovmpt4g 5987 elmpocl 6059 fmpox 6191 f1od2 6226 tposmpo 6272 erovlem 6617 xpcomco 6816 dfplpq2 7328 dfmpq2 7329 |
Copyright terms: Public domain | W3C validator |