| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-mpo | GIF version | ||
| Description: Define maps-to notation for defining an operation via a rule. Read as "the operation defined by the map from 𝑥, 𝑦 (in 𝐴 × 𝐵) to 𝐵(𝑥, 𝑦)". An extension of df-mpt 4147 for two arguments. (Contributed by NM, 17-Feb-2008.) |
| Ref | Expression |
|---|---|
| df-mpo | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vx | . . 3 setvar 𝑥 | |
| 2 | vy | . . 3 setvar 𝑦 | |
| 3 | cA | . . 3 class 𝐴 | |
| 4 | cB | . . 3 class 𝐵 | |
| 5 | cC | . . 3 class 𝐶 | |
| 6 | 1, 2, 3, 4, 5 | cmpo 6009 | . 2 class (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
| 7 | 1 | cv 1394 | . . . . . 6 class 𝑥 |
| 8 | 7, 3 | wcel 2200 | . . . . 5 wff 𝑥 ∈ 𝐴 |
| 9 | 2 | cv 1394 | . . . . . 6 class 𝑦 |
| 10 | 9, 4 | wcel 2200 | . . . . 5 wff 𝑦 ∈ 𝐵 |
| 11 | 8, 10 | wa 104 | . . . 4 wff (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) |
| 12 | vz | . . . . . 6 setvar 𝑧 | |
| 13 | 12 | cv 1394 | . . . . 5 class 𝑧 |
| 14 | 13, 5 | wceq 1395 | . . . 4 wff 𝑧 = 𝐶 |
| 15 | 11, 14 | wa 104 | . . 3 wff ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶) |
| 16 | 15, 1, 2, 12 | coprab 6008 | . 2 class {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
| 17 | 6, 16 | wceq 1395 | 1 wff (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
| Colors of variables: wff set class |
| This definition is referenced by: mpoeq123 6069 mpoeq123dva 6071 mpoeq3dva 6074 nfmpo1 6077 nfmpo2 6078 nfmpo 6079 mpo0 6080 cbvmpox 6088 mpov 6100 mpomptx 6101 resmpo 6108 mpofun 6112 mpo2eqb 6120 rnmpo 6121 reldmmpo 6122 ovmpt4g 6133 elmpocl 6206 fmpox 6352 f1od2 6387 tposmpo 6433 erovlem 6782 xpcomco 6993 dfplpq2 7549 dfmpq2 7550 mpomulf 8144 |
| Copyright terms: Public domain | W3C validator |