| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-mpo | GIF version | ||
| Description: Define maps-to notation for defining an operation via a rule. Read as "the operation defined by the map from 𝑥, 𝑦 (in 𝐴 × 𝐵) to 𝐵(𝑥, 𝑦)". An extension of df-mpt 4126 for two arguments. (Contributed by NM, 17-Feb-2008.) |
| Ref | Expression |
|---|---|
| df-mpo | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vx | . . 3 setvar 𝑥 | |
| 2 | vy | . . 3 setvar 𝑦 | |
| 3 | cA | . . 3 class 𝐴 | |
| 4 | cB | . . 3 class 𝐵 | |
| 5 | cC | . . 3 class 𝐶 | |
| 6 | 1, 2, 3, 4, 5 | cmpo 5976 | . 2 class (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
| 7 | 1 | cv 1374 | . . . . . 6 class 𝑥 |
| 8 | 7, 3 | wcel 2180 | . . . . 5 wff 𝑥 ∈ 𝐴 |
| 9 | 2 | cv 1374 | . . . . . 6 class 𝑦 |
| 10 | 9, 4 | wcel 2180 | . . . . 5 wff 𝑦 ∈ 𝐵 |
| 11 | 8, 10 | wa 104 | . . . 4 wff (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) |
| 12 | vz | . . . . . 6 setvar 𝑧 | |
| 13 | 12 | cv 1374 | . . . . 5 class 𝑧 |
| 14 | 13, 5 | wceq 1375 | . . . 4 wff 𝑧 = 𝐶 |
| 15 | 11, 14 | wa 104 | . . 3 wff ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶) |
| 16 | 15, 1, 2, 12 | coprab 5975 | . 2 class {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
| 17 | 6, 16 | wceq 1375 | 1 wff (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
| Colors of variables: wff set class |
| This definition is referenced by: mpoeq123 6034 mpoeq123dva 6036 mpoeq3dva 6039 nfmpo1 6042 nfmpo2 6043 nfmpo 6044 mpo0 6045 cbvmpox 6053 mpov 6065 mpomptx 6066 resmpo 6073 mpofun 6077 mpo2eqb 6085 rnmpo 6086 reldmmpo 6087 ovmpt4g 6098 elmpocl 6171 fmpox 6316 f1od2 6351 tposmpo 6397 erovlem 6744 xpcomco 6953 dfplpq2 7509 dfmpq2 7510 mpomulf 8104 |
| Copyright terms: Public domain | W3C validator |