ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-mpo GIF version

Definition df-mpo 5927
Description: Define maps-to notation for defining an operation via a rule. Read as "the operation defined by the map from 𝑥, 𝑦 (in 𝐴 × 𝐵) to 𝐵(𝑥, 𝑦)". An extension of df-mpt 4096 for two arguments. (Contributed by NM, 17-Feb-2008.)
Assertion
Ref Expression
df-mpo (𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧   𝑧,𝐴   𝑧,𝐵   𝑧,𝐶
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)

Detailed syntax breakdown of Definition df-mpo
StepHypRef Expression
1 vx . . 3 setvar 𝑥
2 vy . . 3 setvar 𝑦
3 cA . . 3 class 𝐴
4 cB . . 3 class 𝐵
5 cC . . 3 class 𝐶
61, 2, 3, 4, 5cmpo 5924 . 2 class (𝑥𝐴, 𝑦𝐵𝐶)
71cv 1363 . . . . . 6 class 𝑥
87, 3wcel 2167 . . . . 5 wff 𝑥𝐴
92cv 1363 . . . . . 6 class 𝑦
109, 4wcel 2167 . . . . 5 wff 𝑦𝐵
118, 10wa 104 . . . 4 wff (𝑥𝐴𝑦𝐵)
12 vz . . . . . 6 setvar 𝑧
1312cv 1363 . . . . 5 class 𝑧
1413, 5wceq 1364 . . . 4 wff 𝑧 = 𝐶
1511, 14wa 104 . . 3 wff ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)
1615, 1, 2, 12coprab 5923 . 2 class {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
176, 16wceq 1364 1 wff (𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
Colors of variables: wff set class
This definition is referenced by:  mpoeq123  5981  mpoeq123dva  5983  mpoeq3dva  5986  nfmpo1  5989  nfmpo2  5990  nfmpo  5991  mpo0  5992  cbvmpox  6000  mpov  6012  mpomptx  6013  resmpo  6020  mpofun  6024  mpo2eqb  6032  rnmpo  6033  reldmmpo  6034  ovmpt4g  6045  elmpocl  6118  fmpox  6258  f1od2  6293  tposmpo  6339  erovlem  6686  xpcomco  6885  dfplpq2  7421  dfmpq2  7422  mpomulf  8016
  Copyright terms: Public domain W3C validator