![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-mpo | GIF version |
Description: Define maps-to notation for defining an operation via a rule. Read as "the operation defined by the map from 𝑥, 𝑦 (in 𝐴 × 𝐵) to 𝐵(𝑥, 𝑦)". An extension of df-mpt 4068 for two arguments. (Contributed by NM, 17-Feb-2008.) |
Ref | Expression |
---|---|
df-mpo | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vx | . . 3 setvar 𝑥 | |
2 | vy | . . 3 setvar 𝑦 | |
3 | cA | . . 3 class 𝐴 | |
4 | cB | . . 3 class 𝐵 | |
5 | cC | . . 3 class 𝐶 | |
6 | 1, 2, 3, 4, 5 | cmpo 5879 | . 2 class (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
7 | 1 | cv 1352 | . . . . . 6 class 𝑥 |
8 | 7, 3 | wcel 2148 | . . . . 5 wff 𝑥 ∈ 𝐴 |
9 | 2 | cv 1352 | . . . . . 6 class 𝑦 |
10 | 9, 4 | wcel 2148 | . . . . 5 wff 𝑦 ∈ 𝐵 |
11 | 8, 10 | wa 104 | . . . 4 wff (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) |
12 | vz | . . . . . 6 setvar 𝑧 | |
13 | 12 | cv 1352 | . . . . 5 class 𝑧 |
14 | 13, 5 | wceq 1353 | . . . 4 wff 𝑧 = 𝐶 |
15 | 11, 14 | wa 104 | . . 3 wff ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶) |
16 | 15, 1, 2, 12 | coprab 5878 | . 2 class {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
17 | 6, 16 | wceq 1353 | 1 wff (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
Colors of variables: wff set class |
This definition is referenced by: mpoeq123 5936 mpoeq123dva 5938 mpoeq3dva 5941 nfmpo1 5944 nfmpo2 5945 nfmpo 5946 mpo0 5947 cbvmpox 5955 mpov 5967 mpomptx 5968 resmpo 5975 mpofun 5979 mpo2eqb 5986 rnmpo 5987 reldmmpo 5988 ovmpt4g 5999 elmpocl 6071 fmpox 6203 f1od2 6238 tposmpo 6284 erovlem 6629 xpcomco 6828 dfplpq2 7355 dfmpq2 7356 |
Copyright terms: Public domain | W3C validator |