ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ofmres GIF version

Theorem ofmres 6115
Description: Equivalent expressions for a restriction of the function operation map. Unlike 𝑓 𝑅 which is a proper class, ( ∘𝑓 𝑅 ↾ (𝐴 × 𝐵)) can be a set by ofmresex 6116, allowing it to be used as a function or structure argument. By ofmresval 6072, the restricted operation map values are the same as the original values, allowing theorems for 𝑓 𝑅 to be reused. (Contributed by NM, 20-Oct-2014.)
Assertion
Ref Expression
ofmres ( ∘𝑓 𝑅 ↾ (𝐴 × 𝐵)) = (𝑓𝐴, 𝑔𝐵 ↦ (𝑓𝑓 𝑅𝑔))
Distinct variable groups:   𝑓,𝑔,𝐴   𝐵,𝑓,𝑔   𝑅,𝑓,𝑔

Proof of Theorem ofmres
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssv 3169 . . 3 𝐴 ⊆ V
2 ssv 3169 . . 3 𝐵 ⊆ V
3 resmpo 5951 . . 3 ((𝐴 ⊆ V ∧ 𝐵 ⊆ V) → ((𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥)))) ↾ (𝐴 × 𝐵)) = (𝑓𝐴, 𝑔𝐵 ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥)))))
41, 2, 3mp2an 424 . 2 ((𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥)))) ↾ (𝐴 × 𝐵)) = (𝑓𝐴, 𝑔𝐵 ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥))))
5 df-of 6061 . . 3 𝑓 𝑅 = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥))))
65reseq1i 4887 . 2 ( ∘𝑓 𝑅 ↾ (𝐴 × 𝐵)) = ((𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥)))) ↾ (𝐴 × 𝐵))
7 eqid 2170 . . 3 𝐴 = 𝐴
8 eqid 2170 . . 3 𝐵 = 𝐵
9 vex 2733 . . . 4 𝑓 ∈ V
10 vex 2733 . . . 4 𝑔 ∈ V
119dmex 4877 . . . . . 6 dom 𝑓 ∈ V
1211inex1 4123 . . . . 5 (dom 𝑓 ∩ dom 𝑔) ∈ V
1312mptex 5722 . . . 4 (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥))) ∈ V
145ovmpt4g 5975 . . . 4 ((𝑓 ∈ V ∧ 𝑔 ∈ V ∧ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥))) ∈ V) → (𝑓𝑓 𝑅𝑔) = (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥))))
159, 10, 13, 14mp3an 1332 . . 3 (𝑓𝑓 𝑅𝑔) = (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥)))
167, 8, 15mpoeq123i 5916 . 2 (𝑓𝐴, 𝑔𝐵 ↦ (𝑓𝑓 𝑅𝑔)) = (𝑓𝐴, 𝑔𝐵 ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥))))
174, 6, 163eqtr4i 2201 1 ( ∘𝑓 𝑅 ↾ (𝐴 × 𝐵)) = (𝑓𝐴, 𝑔𝐵 ↦ (𝑓𝑓 𝑅𝑔))
Colors of variables: wff set class
Syntax hints:   = wceq 1348  wcel 2141  Vcvv 2730  cin 3120  wss 3121  cmpt 4050   × cxp 4609  dom cdm 4611  cres 4613  cfv 5198  (class class class)co 5853  cmpo 5855  𝑓 cof 6059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-of 6061
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator