| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ofmres | GIF version | ||
| Description: Equivalent expressions for a restriction of the function operation map. Unlike ∘𝑓 𝑅 which is a proper class, ( ∘𝑓 𝑅 ↾ (𝐴 × 𝐵)) can be a set by ofmresex 6222, allowing it to be used as a function or structure argument. By ofmresval 6170, the restricted operation map values are the same as the original values, allowing theorems for ∘𝑓 𝑅 to be reused. (Contributed by NM, 20-Oct-2014.) |
| Ref | Expression |
|---|---|
| ofmres | ⊢ ( ∘𝑓 𝑅 ↾ (𝐴 × 𝐵)) = (𝑓 ∈ 𝐴, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘𝑓 𝑅𝑔)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssv 3215 | . . 3 ⊢ 𝐴 ⊆ V | |
| 2 | ssv 3215 | . . 3 ⊢ 𝐵 ⊆ V | |
| 3 | resmpo 6043 | . . 3 ⊢ ((𝐴 ⊆ V ∧ 𝐵 ⊆ V) → ((𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥)))) ↾ (𝐴 × 𝐵)) = (𝑓 ∈ 𝐴, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥))))) | |
| 4 | 1, 2, 3 | mp2an 426 | . 2 ⊢ ((𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥)))) ↾ (𝐴 × 𝐵)) = (𝑓 ∈ 𝐴, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥)))) |
| 5 | df-of 6158 | . . 3 ⊢ ∘𝑓 𝑅 = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥)))) | |
| 6 | 5 | reseq1i 4955 | . 2 ⊢ ( ∘𝑓 𝑅 ↾ (𝐴 × 𝐵)) = ((𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥)))) ↾ (𝐴 × 𝐵)) |
| 7 | eqid 2205 | . . 3 ⊢ 𝐴 = 𝐴 | |
| 8 | eqid 2205 | . . 3 ⊢ 𝐵 = 𝐵 | |
| 9 | vex 2775 | . . . 4 ⊢ 𝑓 ∈ V | |
| 10 | vex 2775 | . . . 4 ⊢ 𝑔 ∈ V | |
| 11 | 9 | dmex 4945 | . . . . . 6 ⊢ dom 𝑓 ∈ V |
| 12 | 11 | inex1 4178 | . . . . 5 ⊢ (dom 𝑓 ∩ dom 𝑔) ∈ V |
| 13 | 12 | mptex 5810 | . . . 4 ⊢ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥))) ∈ V |
| 14 | 5 | ovmpt4g 6068 | . . . 4 ⊢ ((𝑓 ∈ V ∧ 𝑔 ∈ V ∧ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥))) ∈ V) → (𝑓 ∘𝑓 𝑅𝑔) = (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥)))) |
| 15 | 9, 10, 13, 14 | mp3an 1350 | . . 3 ⊢ (𝑓 ∘𝑓 𝑅𝑔) = (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥))) |
| 16 | 7, 8, 15 | mpoeq123i 6008 | . 2 ⊢ (𝑓 ∈ 𝐴, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘𝑓 𝑅𝑔)) = (𝑓 ∈ 𝐴, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥)))) |
| 17 | 4, 6, 16 | 3eqtr4i 2236 | 1 ⊢ ( ∘𝑓 𝑅 ↾ (𝐴 × 𝐵)) = (𝑓 ∈ 𝐴, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘𝑓 𝑅𝑔)) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∈ wcel 2176 Vcvv 2772 ∩ cin 3165 ⊆ wss 3166 ↦ cmpt 4105 × cxp 4673 dom cdm 4675 ↾ cres 4677 ‘cfv 5271 (class class class)co 5944 ∈ cmpo 5946 ∘𝑓 cof 6156 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-ov 5947 df-oprab 5948 df-mpo 5949 df-of 6158 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |