Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ofmres GIF version

Theorem ofmres 6000
 Description: Equivalent expressions for a restriction of the function operation map. Unlike ∘𝑓 𝑅 which is a proper class, ( ∘𝑓 𝑅 ↾ (𝐴 × 𝐵)) can be a set by ofmresex 6001, allowing it to be used as a function or structure argument. By ofmresval 5959, the restricted operation map values are the same as the original values, allowing theorems for ∘𝑓 𝑅 to be reused. (Contributed by NM, 20-Oct-2014.)
Assertion
Ref Expression
ofmres ( ∘𝑓 𝑅 ↾ (𝐴 × 𝐵)) = (𝑓𝐴, 𝑔𝐵 ↦ (𝑓𝑓 𝑅𝑔))
Distinct variable groups:   𝑓,𝑔,𝐴   𝐵,𝑓,𝑔   𝑅,𝑓,𝑔

Proof of Theorem ofmres
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssv 3087 . . 3 𝐴 ⊆ V
2 ssv 3087 . . 3 𝐵 ⊆ V
3 resmpo 5835 . . 3 ((𝐴 ⊆ V ∧ 𝐵 ⊆ V) → ((𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥)))) ↾ (𝐴 × 𝐵)) = (𝑓𝐴, 𝑔𝐵 ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥)))))
41, 2, 3mp2an 420 . 2 ((𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥)))) ↾ (𝐴 × 𝐵)) = (𝑓𝐴, 𝑔𝐵 ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥))))
5 df-of 5948 . . 3 𝑓 𝑅 = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥))))
65reseq1i 4783 . 2 ( ∘𝑓 𝑅 ↾ (𝐴 × 𝐵)) = ((𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥)))) ↾ (𝐴 × 𝐵))
7 eqid 2115 . . 3 𝐴 = 𝐴
8 eqid 2115 . . 3 𝐵 = 𝐵
9 vex 2661 . . . 4 𝑓 ∈ V
10 vex 2661 . . . 4 𝑔 ∈ V
119dmex 4773 . . . . . 6 dom 𝑓 ∈ V
1211inex1 4030 . . . . 5 (dom 𝑓 ∩ dom 𝑔) ∈ V
1312mptex 5612 . . . 4 (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥))) ∈ V
145ovmpt4g 5859 . . . 4 ((𝑓 ∈ V ∧ 𝑔 ∈ V ∧ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥))) ∈ V) → (𝑓𝑓 𝑅𝑔) = (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥))))
159, 10, 13, 14mp3an 1298 . . 3 (𝑓𝑓 𝑅𝑔) = (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥)))
167, 8, 15mpoeq123i 5800 . 2 (𝑓𝐴, 𝑔𝐵 ↦ (𝑓𝑓 𝑅𝑔)) = (𝑓𝐴, 𝑔𝐵 ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥))))
174, 6, 163eqtr4i 2146 1 ( ∘𝑓 𝑅 ↾ (𝐴 × 𝐵)) = (𝑓𝐴, 𝑔𝐵 ↦ (𝑓𝑓 𝑅𝑔))
 Colors of variables: wff set class Syntax hints:   = wceq 1314   ∈ wcel 1463  Vcvv 2658   ∩ cin 3038   ⊆ wss 3039   ↦ cmpt 3957   × cxp 4505  dom cdm 4507   ↾ cres 4509  ‘cfv 5091  (class class class)co 5740   ∈ cmpo 5742   ∘𝑓 cof 5946 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4011  ax-sep 4014  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420 This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-ral 2396  df-rex 2397  df-reu 2398  df-rab 2400  df-v 2660  df-sbc 2881  df-csb 2974  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-iun 3783  df-br 3898  df-opab 3958  df-mpt 3959  df-id 4183  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fn 5094  df-f 5095  df-f1 5096  df-fo 5097  df-f1o 5098  df-fv 5099  df-ov 5743  df-oprab 5744  df-mpo 5745  df-of 5948 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator