| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpoeq123dv | GIF version | ||
| Description: An equality deduction for the maps-to notation. (Contributed by NM, 12-Sep-2011.) |
| Ref | Expression |
|---|---|
| mpoeq123dv.1 | ⊢ (𝜑 → 𝐴 = 𝐷) |
| mpoeq123dv.2 | ⊢ (𝜑 → 𝐵 = 𝐸) |
| mpoeq123dv.3 | ⊢ (𝜑 → 𝐶 = 𝐹) |
| Ref | Expression |
|---|---|
| mpoeq123dv | ⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐷, 𝑦 ∈ 𝐸 ↦ 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpoeq123dv.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐷) | |
| 2 | mpoeq123dv.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐸) | |
| 3 | 2 | adantr 276 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐸) |
| 4 | mpoeq123dv.3 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐹) | |
| 5 | 4 | adantr 276 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝐶 = 𝐹) |
| 6 | 1, 3, 5 | mpoeq123dva 5987 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐷, 𝑦 ∈ 𝐸 ↦ 𝐹)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 ∈ cmpo 5927 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-oprab 5929 df-mpo 5930 |
| This theorem is referenced by: mpoeq123i 5989 prdsex 12971 prdsval 12975 plusffvalg 13064 grpsubfvalg 13247 grpsubpropdg 13306 mulgfvalg 13327 mulgpropdg 13370 dvrfvald 13765 scaffvalg 13938 psrval 14296 blfvalps 14705 |
| Copyright terms: Public domain | W3C validator |