ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpoeq123dv GIF version

Theorem mpoeq123dv 5984
Description: An equality deduction for the maps-to notation. (Contributed by NM, 12-Sep-2011.)
Hypotheses
Ref Expression
mpoeq123dv.1 (𝜑𝐴 = 𝐷)
mpoeq123dv.2 (𝜑𝐵 = 𝐸)
mpoeq123dv.3 (𝜑𝐶 = 𝐹)
Assertion
Ref Expression
mpoeq123dv (𝜑 → (𝑥𝐴, 𝑦𝐵𝐶) = (𝑥𝐷, 𝑦𝐸𝐹))
Distinct variable groups:   𝜑,𝑥   𝜑,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝐸(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem mpoeq123dv
StepHypRef Expression
1 mpoeq123dv.1 . 2 (𝜑𝐴 = 𝐷)
2 mpoeq123dv.2 . . 3 (𝜑𝐵 = 𝐸)
32adantr 276 . 2 ((𝜑𝑥𝐴) → 𝐵 = 𝐸)
4 mpoeq123dv.3 . . 3 (𝜑𝐶 = 𝐹)
54adantr 276 . 2 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → 𝐶 = 𝐹)
61, 3, 5mpoeq123dva 5983 1 (𝜑 → (𝑥𝐴, 𝑦𝐵𝐶) = (𝑥𝐷, 𝑦𝐸𝐹))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  cmpo 5924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-oprab 5926  df-mpo 5927
This theorem is referenced by:  mpoeq123i  5985  prdsex  12940  plusffvalg  13005  grpsubfvalg  13177  grpsubpropdg  13236  mulgfvalg  13251  mulgpropdg  13294  dvrfvald  13689  scaffvalg  13862  psrval  14220  blfvalps  14621
  Copyright terms: Public domain W3C validator