| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpoeq3dva | GIF version | ||
| Description: Slightly more general equality inference for the maps-to notation. (Contributed by NM, 17-Oct-2013.) |
| Ref | Expression |
|---|---|
| mpoeq3dva.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| mpoeq3dva | ⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpoeq3dva.1 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 = 𝐷) | |
| 2 | 1 | 3expb 1207 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝐶 = 𝐷) |
| 3 | 2 | eqeq2d 2218 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝑧 = 𝐶 ↔ 𝑧 = 𝐷)) |
| 4 | 3 | pm5.32da 452 | . . 3 ⊢ (𝜑 → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐷))) |
| 5 | 4 | oprabbidv 6012 | . 2 ⊢ (𝜑 → {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐷)}) |
| 6 | df-mpo 5962 | . 2 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} | |
| 7 | df-mpo 5962 | . 2 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐷)} | |
| 8 | 5, 6, 7 | 3eqtr4g 2264 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 {coprab 5958 ∈ cmpo 5959 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-oprab 5961 df-mpo 5962 |
| This theorem is referenced by: mpoeq3ia 6023 mpoeq3dv 6024 ofeq 6174 fmpoco 6315 mapxpen 6960 seqeq2 10618 seqeq3 10619 grpsubpropd2 13512 mulgpropdg 13575 cnmpt2t 14840 cnmpt22 14841 cnmptcom 14845 |
| Copyright terms: Public domain | W3C validator |