| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3dvdsdec | GIF version | ||
| Description: A decimal number is divisible by three iff the sum of its two "digits" is divisible by three. The term "digits" in its narrow sense is only correct if 𝐴 and 𝐵 actually are digits (i.e. nonnegative integers less than 10). However, this theorem holds for arbitrary nonnegative integers 𝐴 and 𝐵, especially if 𝐴 is itself a decimal number, e.g., 𝐴 = ;𝐶𝐷. (Contributed by AV, 14-Jun-2021.) (Revised by AV, 8-Sep-2021.) |
| Ref | Expression |
|---|---|
| 3dvdsdec.a | ⊢ 𝐴 ∈ ℕ0 |
| 3dvdsdec.b | ⊢ 𝐵 ∈ ℕ0 |
| Ref | Expression |
|---|---|
| 3dvdsdec | ⊢ (3 ∥ ;𝐴𝐵 ↔ 3 ∥ (𝐴 + 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfdec10 9589 | . . . 4 ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) | |
| 2 | 9p1e10 9588 | . . . . . . . 8 ⊢ (9 + 1) = ;10 | |
| 3 | 2 | eqcomi 2233 | . . . . . . 7 ⊢ ;10 = (9 + 1) |
| 4 | 3 | oveq1i 6017 | . . . . . 6 ⊢ (;10 · 𝐴) = ((9 + 1) · 𝐴) |
| 5 | 9cn 9206 | . . . . . . 7 ⊢ 9 ∈ ℂ | |
| 6 | ax-1cn 8100 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
| 7 | 3dvdsdec.a | . . . . . . . 8 ⊢ 𝐴 ∈ ℕ0 | |
| 8 | 7 | nn0cni 9389 | . . . . . . 7 ⊢ 𝐴 ∈ ℂ |
| 9 | 5, 6, 8 | adddiri 8165 | . . . . . 6 ⊢ ((9 + 1) · 𝐴) = ((9 · 𝐴) + (1 · 𝐴)) |
| 10 | 8 | mullidi 8157 | . . . . . . 7 ⊢ (1 · 𝐴) = 𝐴 |
| 11 | 10 | oveq2i 6018 | . . . . . 6 ⊢ ((9 · 𝐴) + (1 · 𝐴)) = ((9 · 𝐴) + 𝐴) |
| 12 | 4, 9, 11 | 3eqtri 2254 | . . . . 5 ⊢ (;10 · 𝐴) = ((9 · 𝐴) + 𝐴) |
| 13 | 12 | oveq1i 6017 | . . . 4 ⊢ ((;10 · 𝐴) + 𝐵) = (((9 · 𝐴) + 𝐴) + 𝐵) |
| 14 | 5, 8 | mulcli 8159 | . . . . 5 ⊢ (9 · 𝐴) ∈ ℂ |
| 15 | 3dvdsdec.b | . . . . . 6 ⊢ 𝐵 ∈ ℕ0 | |
| 16 | 15 | nn0cni 9389 | . . . . 5 ⊢ 𝐵 ∈ ℂ |
| 17 | 14, 8, 16 | addassi 8162 | . . . 4 ⊢ (((9 · 𝐴) + 𝐴) + 𝐵) = ((9 · 𝐴) + (𝐴 + 𝐵)) |
| 18 | 1, 13, 17 | 3eqtri 2254 | . . 3 ⊢ ;𝐴𝐵 = ((9 · 𝐴) + (𝐴 + 𝐵)) |
| 19 | 18 | breq2i 4091 | . 2 ⊢ (3 ∥ ;𝐴𝐵 ↔ 3 ∥ ((9 · 𝐴) + (𝐴 + 𝐵))) |
| 20 | 3z 9483 | . . 3 ⊢ 3 ∈ ℤ | |
| 21 | 7 | nn0zi 9476 | . . . 4 ⊢ 𝐴 ∈ ℤ |
| 22 | 15 | nn0zi 9476 | . . . 4 ⊢ 𝐵 ∈ ℤ |
| 23 | zaddcl 9494 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℤ) | |
| 24 | 21, 22, 23 | mp2an 426 | . . 3 ⊢ (𝐴 + 𝐵) ∈ ℤ |
| 25 | 9nn 9287 | . . . . . 6 ⊢ 9 ∈ ℕ | |
| 26 | 25 | nnzi 9475 | . . . . 5 ⊢ 9 ∈ ℤ |
| 27 | zmulcl 9508 | . . . . 5 ⊢ ((9 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (9 · 𝐴) ∈ ℤ) | |
| 28 | 26, 21, 27 | mp2an 426 | . . . 4 ⊢ (9 · 𝐴) ∈ ℤ |
| 29 | zmulcl 9508 | . . . . . . 7 ⊢ ((3 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (3 · 𝐴) ∈ ℤ) | |
| 30 | 20, 21, 29 | mp2an 426 | . . . . . 6 ⊢ (3 · 𝐴) ∈ ℤ |
| 31 | dvdsmul1 12332 | . . . . . 6 ⊢ ((3 ∈ ℤ ∧ (3 · 𝐴) ∈ ℤ) → 3 ∥ (3 · (3 · 𝐴))) | |
| 32 | 20, 30, 31 | mp2an 426 | . . . . 5 ⊢ 3 ∥ (3 · (3 · 𝐴)) |
| 33 | 3t3e9 9276 | . . . . . . . 8 ⊢ (3 · 3) = 9 | |
| 34 | 33 | eqcomi 2233 | . . . . . . 7 ⊢ 9 = (3 · 3) |
| 35 | 34 | oveq1i 6017 | . . . . . 6 ⊢ (9 · 𝐴) = ((3 · 3) · 𝐴) |
| 36 | 3cn 9193 | . . . . . . 7 ⊢ 3 ∈ ℂ | |
| 37 | 36, 36, 8 | mulassi 8163 | . . . . . 6 ⊢ ((3 · 3) · 𝐴) = (3 · (3 · 𝐴)) |
| 38 | 35, 37 | eqtri 2250 | . . . . 5 ⊢ (9 · 𝐴) = (3 · (3 · 𝐴)) |
| 39 | 32, 38 | breqtrri 4110 | . . . 4 ⊢ 3 ∥ (9 · 𝐴) |
| 40 | 28, 39 | pm3.2i 272 | . . 3 ⊢ ((9 · 𝐴) ∈ ℤ ∧ 3 ∥ (9 · 𝐴)) |
| 41 | dvdsadd2b 12359 | . . 3 ⊢ ((3 ∈ ℤ ∧ (𝐴 + 𝐵) ∈ ℤ ∧ ((9 · 𝐴) ∈ ℤ ∧ 3 ∥ (9 · 𝐴))) → (3 ∥ (𝐴 + 𝐵) ↔ 3 ∥ ((9 · 𝐴) + (𝐴 + 𝐵)))) | |
| 42 | 20, 24, 40, 41 | mp3an 1371 | . 2 ⊢ (3 ∥ (𝐴 + 𝐵) ↔ 3 ∥ ((9 · 𝐴) + (𝐴 + 𝐵))) |
| 43 | 19, 42 | bitr4i 187 | 1 ⊢ (3 ∥ ;𝐴𝐵 ↔ 3 ∥ (𝐴 + 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∈ wcel 2200 class class class wbr 4083 (class class class)co 6007 0cc0 8007 1c1 8008 + caddc 8010 · cmul 8012 3c3 9170 9c9 9176 ℕ0cn0 9377 ℤcz 9454 ;cdc 9586 ∥ cdvds 12306 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-mulrcl 8106 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-ltadd 8123 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-5 9180 df-6 9181 df-7 9182 df-8 9183 df-9 9184 df-n0 9378 df-z 9455 df-dec 9587 df-dvds 12307 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |