| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3dvdsdec | GIF version | ||
| Description: A decimal number is divisible by three iff the sum of its two "digits" is divisible by three. The term "digits" in its narrow sense is only correct if 𝐴 and 𝐵 actually are digits (i.e. nonnegative integers less than 10). However, this theorem holds for arbitrary nonnegative integers 𝐴 and 𝐵, especially if 𝐴 is itself a decimal number, e.g., 𝐴 = ;𝐶𝐷. (Contributed by AV, 14-Jun-2021.) (Revised by AV, 8-Sep-2021.) |
| Ref | Expression |
|---|---|
| 3dvdsdec.a | ⊢ 𝐴 ∈ ℕ0 |
| 3dvdsdec.b | ⊢ 𝐵 ∈ ℕ0 |
| Ref | Expression |
|---|---|
| 3dvdsdec | ⊢ (3 ∥ ;𝐴𝐵 ↔ 3 ∥ (𝐴 + 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfdec10 9514 | . . . 4 ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) | |
| 2 | 9p1e10 9513 | . . . . . . . 8 ⊢ (9 + 1) = ;10 | |
| 3 | 2 | eqcomi 2210 | . . . . . . 7 ⊢ ;10 = (9 + 1) |
| 4 | 3 | oveq1i 5961 | . . . . . 6 ⊢ (;10 · 𝐴) = ((9 + 1) · 𝐴) |
| 5 | 9cn 9131 | . . . . . . 7 ⊢ 9 ∈ ℂ | |
| 6 | ax-1cn 8025 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
| 7 | 3dvdsdec.a | . . . . . . . 8 ⊢ 𝐴 ∈ ℕ0 | |
| 8 | 7 | nn0cni 9314 | . . . . . . 7 ⊢ 𝐴 ∈ ℂ |
| 9 | 5, 6, 8 | adddiri 8090 | . . . . . 6 ⊢ ((9 + 1) · 𝐴) = ((9 · 𝐴) + (1 · 𝐴)) |
| 10 | 8 | mullidi 8082 | . . . . . . 7 ⊢ (1 · 𝐴) = 𝐴 |
| 11 | 10 | oveq2i 5962 | . . . . . 6 ⊢ ((9 · 𝐴) + (1 · 𝐴)) = ((9 · 𝐴) + 𝐴) |
| 12 | 4, 9, 11 | 3eqtri 2231 | . . . . 5 ⊢ (;10 · 𝐴) = ((9 · 𝐴) + 𝐴) |
| 13 | 12 | oveq1i 5961 | . . . 4 ⊢ ((;10 · 𝐴) + 𝐵) = (((9 · 𝐴) + 𝐴) + 𝐵) |
| 14 | 5, 8 | mulcli 8084 | . . . . 5 ⊢ (9 · 𝐴) ∈ ℂ |
| 15 | 3dvdsdec.b | . . . . . 6 ⊢ 𝐵 ∈ ℕ0 | |
| 16 | 15 | nn0cni 9314 | . . . . 5 ⊢ 𝐵 ∈ ℂ |
| 17 | 14, 8, 16 | addassi 8087 | . . . 4 ⊢ (((9 · 𝐴) + 𝐴) + 𝐵) = ((9 · 𝐴) + (𝐴 + 𝐵)) |
| 18 | 1, 13, 17 | 3eqtri 2231 | . . 3 ⊢ ;𝐴𝐵 = ((9 · 𝐴) + (𝐴 + 𝐵)) |
| 19 | 18 | breq2i 4055 | . 2 ⊢ (3 ∥ ;𝐴𝐵 ↔ 3 ∥ ((9 · 𝐴) + (𝐴 + 𝐵))) |
| 20 | 3z 9408 | . . 3 ⊢ 3 ∈ ℤ | |
| 21 | 7 | nn0zi 9401 | . . . 4 ⊢ 𝐴 ∈ ℤ |
| 22 | 15 | nn0zi 9401 | . . . 4 ⊢ 𝐵 ∈ ℤ |
| 23 | zaddcl 9419 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℤ) | |
| 24 | 21, 22, 23 | mp2an 426 | . . 3 ⊢ (𝐴 + 𝐵) ∈ ℤ |
| 25 | 9nn 9212 | . . . . . 6 ⊢ 9 ∈ ℕ | |
| 26 | 25 | nnzi 9400 | . . . . 5 ⊢ 9 ∈ ℤ |
| 27 | zmulcl 9433 | . . . . 5 ⊢ ((9 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (9 · 𝐴) ∈ ℤ) | |
| 28 | 26, 21, 27 | mp2an 426 | . . . 4 ⊢ (9 · 𝐴) ∈ ℤ |
| 29 | zmulcl 9433 | . . . . . . 7 ⊢ ((3 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (3 · 𝐴) ∈ ℤ) | |
| 30 | 20, 21, 29 | mp2an 426 | . . . . . 6 ⊢ (3 · 𝐴) ∈ ℤ |
| 31 | dvdsmul1 12168 | . . . . . 6 ⊢ ((3 ∈ ℤ ∧ (3 · 𝐴) ∈ ℤ) → 3 ∥ (3 · (3 · 𝐴))) | |
| 32 | 20, 30, 31 | mp2an 426 | . . . . 5 ⊢ 3 ∥ (3 · (3 · 𝐴)) |
| 33 | 3t3e9 9201 | . . . . . . . 8 ⊢ (3 · 3) = 9 | |
| 34 | 33 | eqcomi 2210 | . . . . . . 7 ⊢ 9 = (3 · 3) |
| 35 | 34 | oveq1i 5961 | . . . . . 6 ⊢ (9 · 𝐴) = ((3 · 3) · 𝐴) |
| 36 | 3cn 9118 | . . . . . . 7 ⊢ 3 ∈ ℂ | |
| 37 | 36, 36, 8 | mulassi 8088 | . . . . . 6 ⊢ ((3 · 3) · 𝐴) = (3 · (3 · 𝐴)) |
| 38 | 35, 37 | eqtri 2227 | . . . . 5 ⊢ (9 · 𝐴) = (3 · (3 · 𝐴)) |
| 39 | 32, 38 | breqtrri 4074 | . . . 4 ⊢ 3 ∥ (9 · 𝐴) |
| 40 | 28, 39 | pm3.2i 272 | . . 3 ⊢ ((9 · 𝐴) ∈ ℤ ∧ 3 ∥ (9 · 𝐴)) |
| 41 | dvdsadd2b 12195 | . . 3 ⊢ ((3 ∈ ℤ ∧ (𝐴 + 𝐵) ∈ ℤ ∧ ((9 · 𝐴) ∈ ℤ ∧ 3 ∥ (9 · 𝐴))) → (3 ∥ (𝐴 + 𝐵) ↔ 3 ∥ ((9 · 𝐴) + (𝐴 + 𝐵)))) | |
| 42 | 20, 24, 40, 41 | mp3an 1350 | . 2 ⊢ (3 ∥ (𝐴 + 𝐵) ↔ 3 ∥ ((9 · 𝐴) + (𝐴 + 𝐵))) |
| 43 | 19, 42 | bitr4i 187 | 1 ⊢ (3 ∥ ;𝐴𝐵 ↔ 3 ∥ (𝐴 + 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∈ wcel 2177 class class class wbr 4047 (class class class)co 5951 0cc0 7932 1c1 7933 + caddc 7935 · cmul 7937 3c3 9095 9c9 9101 ℕ0cn0 9302 ℤcz 9379 ;cdc 9511 ∥ cdvds 12142 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-mulrcl 8031 ax-addcom 8032 ax-mulcom 8033 ax-addass 8034 ax-mulass 8035 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-1rid 8039 ax-0id 8040 ax-rnegex 8041 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-ltadd 8048 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3000 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-br 4048 df-opab 4110 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-iota 5237 df-fun 5278 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-inn 9044 df-2 9102 df-3 9103 df-4 9104 df-5 9105 df-6 9106 df-7 9107 df-8 9108 df-9 9109 df-n0 9303 df-z 9380 df-dec 9512 df-dvds 12143 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |