![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3dvdsdec | GIF version |
Description: A decimal number is divisible by three iff the sum of its two "digits" is divisible by three. The term "digits" in its narrow sense is only correct if 𝐴 and 𝐵 actually are digits (i.e. nonnegative integers less than 10). However, this theorem holds for arbitrary nonnegative integers 𝐴 and 𝐵, especially if 𝐴 is itself a decimal number, e.g., 𝐴 = ;𝐶𝐷. (Contributed by AV, 14-Jun-2021.) (Revised by AV, 8-Sep-2021.) |
Ref | Expression |
---|---|
3dvdsdec.a | ⊢ 𝐴 ∈ ℕ0 |
3dvdsdec.b | ⊢ 𝐵 ∈ ℕ0 |
Ref | Expression |
---|---|
3dvdsdec | ⊢ (3 ∥ ;𝐴𝐵 ↔ 3 ∥ (𝐴 + 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdec10 9389 | . . . 4 ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) | |
2 | 9p1e10 9388 | . . . . . . . 8 ⊢ (9 + 1) = ;10 | |
3 | 2 | eqcomi 2181 | . . . . . . 7 ⊢ ;10 = (9 + 1) |
4 | 3 | oveq1i 5887 | . . . . . 6 ⊢ (;10 · 𝐴) = ((9 + 1) · 𝐴) |
5 | 9cn 9009 | . . . . . . 7 ⊢ 9 ∈ ℂ | |
6 | ax-1cn 7906 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
7 | 3dvdsdec.a | . . . . . . . 8 ⊢ 𝐴 ∈ ℕ0 | |
8 | 7 | nn0cni 9190 | . . . . . . 7 ⊢ 𝐴 ∈ ℂ |
9 | 5, 6, 8 | adddiri 7970 | . . . . . 6 ⊢ ((9 + 1) · 𝐴) = ((9 · 𝐴) + (1 · 𝐴)) |
10 | 8 | mullidi 7962 | . . . . . . 7 ⊢ (1 · 𝐴) = 𝐴 |
11 | 10 | oveq2i 5888 | . . . . . 6 ⊢ ((9 · 𝐴) + (1 · 𝐴)) = ((9 · 𝐴) + 𝐴) |
12 | 4, 9, 11 | 3eqtri 2202 | . . . . 5 ⊢ (;10 · 𝐴) = ((9 · 𝐴) + 𝐴) |
13 | 12 | oveq1i 5887 | . . . 4 ⊢ ((;10 · 𝐴) + 𝐵) = (((9 · 𝐴) + 𝐴) + 𝐵) |
14 | 5, 8 | mulcli 7964 | . . . . 5 ⊢ (9 · 𝐴) ∈ ℂ |
15 | 3dvdsdec.b | . . . . . 6 ⊢ 𝐵 ∈ ℕ0 | |
16 | 15 | nn0cni 9190 | . . . . 5 ⊢ 𝐵 ∈ ℂ |
17 | 14, 8, 16 | addassi 7967 | . . . 4 ⊢ (((9 · 𝐴) + 𝐴) + 𝐵) = ((9 · 𝐴) + (𝐴 + 𝐵)) |
18 | 1, 13, 17 | 3eqtri 2202 | . . 3 ⊢ ;𝐴𝐵 = ((9 · 𝐴) + (𝐴 + 𝐵)) |
19 | 18 | breq2i 4013 | . 2 ⊢ (3 ∥ ;𝐴𝐵 ↔ 3 ∥ ((9 · 𝐴) + (𝐴 + 𝐵))) |
20 | 3z 9284 | . . 3 ⊢ 3 ∈ ℤ | |
21 | 7 | nn0zi 9277 | . . . 4 ⊢ 𝐴 ∈ ℤ |
22 | 15 | nn0zi 9277 | . . . 4 ⊢ 𝐵 ∈ ℤ |
23 | zaddcl 9295 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℤ) | |
24 | 21, 22, 23 | mp2an 426 | . . 3 ⊢ (𝐴 + 𝐵) ∈ ℤ |
25 | 9nn 9089 | . . . . . 6 ⊢ 9 ∈ ℕ | |
26 | 25 | nnzi 9276 | . . . . 5 ⊢ 9 ∈ ℤ |
27 | zmulcl 9308 | . . . . 5 ⊢ ((9 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (9 · 𝐴) ∈ ℤ) | |
28 | 26, 21, 27 | mp2an 426 | . . . 4 ⊢ (9 · 𝐴) ∈ ℤ |
29 | zmulcl 9308 | . . . . . . 7 ⊢ ((3 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (3 · 𝐴) ∈ ℤ) | |
30 | 20, 21, 29 | mp2an 426 | . . . . . 6 ⊢ (3 · 𝐴) ∈ ℤ |
31 | dvdsmul1 11822 | . . . . . 6 ⊢ ((3 ∈ ℤ ∧ (3 · 𝐴) ∈ ℤ) → 3 ∥ (3 · (3 · 𝐴))) | |
32 | 20, 30, 31 | mp2an 426 | . . . . 5 ⊢ 3 ∥ (3 · (3 · 𝐴)) |
33 | 3t3e9 9078 | . . . . . . . 8 ⊢ (3 · 3) = 9 | |
34 | 33 | eqcomi 2181 | . . . . . . 7 ⊢ 9 = (3 · 3) |
35 | 34 | oveq1i 5887 | . . . . . 6 ⊢ (9 · 𝐴) = ((3 · 3) · 𝐴) |
36 | 3cn 8996 | . . . . . . 7 ⊢ 3 ∈ ℂ | |
37 | 36, 36, 8 | mulassi 7968 | . . . . . 6 ⊢ ((3 · 3) · 𝐴) = (3 · (3 · 𝐴)) |
38 | 35, 37 | eqtri 2198 | . . . . 5 ⊢ (9 · 𝐴) = (3 · (3 · 𝐴)) |
39 | 32, 38 | breqtrri 4032 | . . . 4 ⊢ 3 ∥ (9 · 𝐴) |
40 | 28, 39 | pm3.2i 272 | . . 3 ⊢ ((9 · 𝐴) ∈ ℤ ∧ 3 ∥ (9 · 𝐴)) |
41 | dvdsadd2b 11849 | . . 3 ⊢ ((3 ∈ ℤ ∧ (𝐴 + 𝐵) ∈ ℤ ∧ ((9 · 𝐴) ∈ ℤ ∧ 3 ∥ (9 · 𝐴))) → (3 ∥ (𝐴 + 𝐵) ↔ 3 ∥ ((9 · 𝐴) + (𝐴 + 𝐵)))) | |
42 | 20, 24, 40, 41 | mp3an 1337 | . 2 ⊢ (3 ∥ (𝐴 + 𝐵) ↔ 3 ∥ ((9 · 𝐴) + (𝐴 + 𝐵))) |
43 | 19, 42 | bitr4i 187 | 1 ⊢ (3 ∥ ;𝐴𝐵 ↔ 3 ∥ (𝐴 + 𝐵)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 ∈ wcel 2148 class class class wbr 4005 (class class class)co 5877 0cc0 7813 1c1 7814 + caddc 7816 · cmul 7818 3c3 8973 9c9 8979 ℕ0cn0 9178 ℤcz 9255 ;cdc 9386 ∥ cdvds 11796 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-mulrcl 7912 ax-addcom 7913 ax-mulcom 7914 ax-addass 7915 ax-mulass 7916 ax-distr 7917 ax-i2m1 7918 ax-0lt1 7919 ax-1rid 7920 ax-0id 7921 ax-rnegex 7922 ax-cnre 7924 ax-pre-ltirr 7925 ax-pre-ltwlin 7926 ax-pre-lttrn 7927 ax-pre-ltadd 7929 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-opab 4067 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-iota 5180 df-fun 5220 df-fv 5226 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-pnf 7996 df-mnf 7997 df-xr 7998 df-ltxr 7999 df-le 8000 df-sub 8132 df-neg 8133 df-inn 8922 df-2 8980 df-3 8981 df-4 8982 df-5 8983 df-6 8984 df-7 8985 df-8 8986 df-9 8987 df-n0 9179 df-z 9256 df-dec 9387 df-dvds 11797 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |