Proof of Theorem sincos6thpi
| Step | Hyp | Ref
 | Expression | 
| 1 |   | 2cn 9061 | 
. . . . 5
⊢ 2 ∈
ℂ | 
| 2 | 1 | a1i 9 | 
. . . 4
⊢ (⊤
→ 2 ∈ ℂ) | 
| 3 |   | pire 15022 | 
. . . . . . . 8
⊢ π
∈ ℝ | 
| 4 |   | 6re 9071 | 
. . . . . . . 8
⊢ 6 ∈
ℝ | 
| 5 |   | 6pos 9091 | 
. . . . . . . . 9
⊢ 0 <
6 | 
| 6 | 4, 5 | gt0ap0ii 8655 | 
. . . . . . . 8
⊢ 6 #
0 | 
| 7 | 3, 4, 6 | redivclapi 8806 | 
. . . . . . 7
⊢ (π /
6) ∈ ℝ | 
| 8 | 7 | recni 8038 | 
. . . . . 6
⊢ (π /
6) ∈ ℂ | 
| 9 |   | sincl 11871 | 
. . . . . 6
⊢ ((π /
6) ∈ ℂ → (sin‘(π / 6)) ∈
ℂ) | 
| 10 | 8, 9 | ax-mp 5 | 
. . . . 5
⊢
(sin‘(π / 6)) ∈ ℂ | 
| 11 | 10 | a1i 9 | 
. . . 4
⊢ (⊤
→ (sin‘(π / 6)) ∈ ℂ) | 
| 12 |   | 2ap0 9083 | 
. . . . 5
⊢ 2 #
0 | 
| 13 | 12 | a1i 9 | 
. . . 4
⊢ (⊤
→ 2 # 0) | 
| 14 |   | recoscl 11886 | 
. . . . . . . . . . . 12
⊢ ((π /
6) ∈ ℝ → (cos‘(π / 6)) ∈
ℝ) | 
| 15 | 7, 14 | ax-mp 5 | 
. . . . . . . . . . 11
⊢
(cos‘(π / 6)) ∈ ℝ | 
| 16 | 15 | recni 8038 | 
. . . . . . . . . 10
⊢
(cos‘(π / 6)) ∈ ℂ | 
| 17 | 1, 10, 16 | mulassi 8035 | 
. . . . . . . . 9
⊢ ((2
· (sin‘(π / 6))) · (cos‘(π / 6))) = (2 ·
((sin‘(π / 6)) · (cos‘(π / 6)))) | 
| 18 |   | sin2t 11914 | 
. . . . . . . . . 10
⊢ ((π /
6) ∈ ℂ → (sin‘(2 · (π / 6))) = (2 ·
((sin‘(π / 6)) · (cos‘(π / 6))))) | 
| 19 | 8, 18 | ax-mp 5 | 
. . . . . . . . 9
⊢
(sin‘(2 · (π / 6))) = (2 · ((sin‘(π /
6)) · (cos‘(π / 6)))) | 
| 20 | 17, 19 | eqtr4i 2220 | 
. . . . . . . 8
⊢ ((2
· (sin‘(π / 6))) · (cos‘(π / 6))) =
(sin‘(2 · (π / 6))) | 
| 21 |   | 3cn 9065 | 
. . . . . . . . . . . 12
⊢ 3 ∈
ℂ | 
| 22 |   | 3ap0 9086 | 
. . . . . . . . . . . 12
⊢ 3 #
0 | 
| 23 | 1, 21, 22 | divclapi 8781 | 
. . . . . . . . . . 11
⊢ (2 / 3)
∈ ℂ | 
| 24 | 21, 22 | recclapi 8769 | 
. . . . . . . . . . 11
⊢ (1 / 3)
∈ ℂ | 
| 25 |   | df-3 9050 | 
. . . . . . . . . . . . 13
⊢ 3 = (2 +
1) | 
| 26 | 25 | oveq1i 5932 | 
. . . . . . . . . . . 12
⊢ (3 / 3) =
((2 + 1) / 3) | 
| 27 | 21, 22 | dividapi 8772 | 
. . . . . . . . . . . 12
⊢ (3 / 3) =
1 | 
| 28 |   | ax-1cn 7972 | 
. . . . . . . . . . . . 13
⊢ 1 ∈
ℂ | 
| 29 | 1, 28, 21, 22 | divdirapi 8796 | 
. . . . . . . . . . . 12
⊢ ((2 + 1)
/ 3) = ((2 / 3) + (1 / 3)) | 
| 30 | 26, 27, 29 | 3eqtr3ri 2226 | 
. . . . . . . . . . 11
⊢ ((2 / 3)
+ (1 / 3)) = 1 | 
| 31 |   | sincosq1eq 15075 | 
. . . . . . . . . . 11
⊢ (((2 / 3)
∈ ℂ ∧ (1 / 3) ∈ ℂ ∧ ((2 / 3) + (1 / 3)) = 1)
→ (sin‘((2 / 3) · (π / 2))) = (cos‘((1 / 3) ·
(π / 2)))) | 
| 32 | 23, 24, 30, 31 | mp3an 1348 | 
. . . . . . . . . 10
⊢
(sin‘((2 / 3) · (π / 2))) = (cos‘((1 / 3) ·
(π / 2))) | 
| 33 |   | picn 15023 | 
. . . . . . . . . . . . 13
⊢ π
∈ ℂ | 
| 34 | 1, 21, 33, 1, 22, 12 | divmuldivapi 8799 | 
. . . . . . . . . . . 12
⊢ ((2 / 3)
· (π / 2)) = ((2 · π) / (3 · 2)) | 
| 35 |   | 3t2e6 9147 | 
. . . . . . . . . . . . 13
⊢ (3
· 2) = 6 | 
| 36 | 35 | oveq2i 5933 | 
. . . . . . . . . . . 12
⊢ ((2
· π) / (3 · 2)) = ((2 · π) / 6) | 
| 37 |   | 6cn 9072 | 
. . . . . . . . . . . . 13
⊢ 6 ∈
ℂ | 
| 38 | 1, 33, 37, 6 | divassapi 8795 | 
. . . . . . . . . . . 12
⊢ ((2
· π) / 6) = (2 · (π / 6)) | 
| 39 | 34, 36, 38 | 3eqtri 2221 | 
. . . . . . . . . . 11
⊢ ((2 / 3)
· (π / 2)) = (2 · (π / 6)) | 
| 40 | 39 | fveq2i 5561 | 
. . . . . . . . . 10
⊢
(sin‘((2 / 3) · (π / 2))) = (sin‘(2 · (π
/ 6))) | 
| 41 | 32, 40 | eqtr3i 2219 | 
. . . . . . . . 9
⊢
(cos‘((1 / 3) · (π / 2))) = (sin‘(2 · (π
/ 6))) | 
| 42 | 28, 21, 33, 1, 22, 12 | divmuldivapi 8799 | 
. . . . . . . . . . 11
⊢ ((1 / 3)
· (π / 2)) = ((1 · π) / (3 · 2)) | 
| 43 | 33 | mullidi 8029 | 
. . . . . . . . . . . 12
⊢ (1
· π) = π | 
| 44 | 43, 35 | oveq12i 5934 | 
. . . . . . . . . . 11
⊢ ((1
· π) / (3 · 2)) = (π / 6) | 
| 45 | 42, 44 | eqtri 2217 | 
. . . . . . . . . 10
⊢ ((1 / 3)
· (π / 2)) = (π / 6) | 
| 46 | 45 | fveq2i 5561 | 
. . . . . . . . 9
⊢
(cos‘((1 / 3) · (π / 2))) = (cos‘(π /
6)) | 
| 47 | 41, 46 | eqtr3i 2219 | 
. . . . . . . 8
⊢
(sin‘(2 · (π / 6))) = (cos‘(π /
6)) | 
| 48 | 20, 47 | eqtri 2217 | 
. . . . . . 7
⊢ ((2
· (sin‘(π / 6))) · (cos‘(π / 6))) =
(cos‘(π / 6)) | 
| 49 | 16 | mullidi 8029 | 
. . . . . . 7
⊢ (1
· (cos‘(π / 6))) = (cos‘(π / 6)) | 
| 50 | 48, 49 | eqtr4i 2220 | 
. . . . . 6
⊢ ((2
· (sin‘(π / 6))) · (cos‘(π / 6))) = (1 ·
(cos‘(π / 6))) | 
| 51 | 1, 10 | mulcli 8031 | 
. . . . . . 7
⊢ (2
· (sin‘(π / 6))) ∈ ℂ | 
| 52 |   | pipos 15024 | 
. . . . . . . . . . . . 13
⊢ 0 <
π | 
| 53 | 3, 4, 52, 5 | divgt0ii 8946 | 
. . . . . . . . . . . 12
⊢ 0 <
(π / 6) | 
| 54 |   | 2lt6 9173 | 
. . . . . . . . . . . . 13
⊢ 2 <
6 | 
| 55 |   | 2re 9060 | 
. . . . . . . . . . . . . . 15
⊢ 2 ∈
ℝ | 
| 56 |   | 2pos 9081 | 
. . . . . . . . . . . . . . 15
⊢ 0 <
2 | 
| 57 | 55, 56 | pm3.2i 272 | 
. . . . . . . . . . . . . 14
⊢ (2 ∈
ℝ ∧ 0 < 2) | 
| 58 | 4, 5 | pm3.2i 272 | 
. . . . . . . . . . . . . 14
⊢ (6 ∈
ℝ ∧ 0 < 6) | 
| 59 | 3, 52 | pm3.2i 272 | 
. . . . . . . . . . . . . 14
⊢ (π
∈ ℝ ∧ 0 < π) | 
| 60 |   | ltdiv2 8914 | 
. . . . . . . . . . . . . 14
⊢ (((2
∈ ℝ ∧ 0 < 2) ∧ (6 ∈ ℝ ∧ 0 < 6) ∧
(π ∈ ℝ ∧ 0 < π)) → (2 < 6 ↔ (π / 6)
< (π / 2))) | 
| 61 | 57, 58, 59, 60 | mp3an 1348 | 
. . . . . . . . . . . . 13
⊢ (2 < 6
↔ (π / 6) < (π / 2)) | 
| 62 | 54, 61 | mpbi 145 | 
. . . . . . . . . . . 12
⊢ (π /
6) < (π / 2) | 
| 63 |   | 0re 8026 | 
. . . . . . . . . . . . 13
⊢ 0 ∈
ℝ | 
| 64 |   | halfpire 15028 | 
. . . . . . . . . . . . 13
⊢ (π /
2) ∈ ℝ | 
| 65 |   | rexr 8072 | 
. . . . . . . . . . . . . 14
⊢ (0 ∈
ℝ → 0 ∈ ℝ*) | 
| 66 |   | rexr 8072 | 
. . . . . . . . . . . . . 14
⊢ ((π /
2) ∈ ℝ → (π / 2) ∈
ℝ*) | 
| 67 |   | elioo2 9996 | 
. . . . . . . . . . . . . 14
⊢ ((0
∈ ℝ* ∧ (π / 2) ∈ ℝ*) →
((π / 6) ∈ (0(,)(π / 2)) ↔ ((π / 6) ∈ ℝ ∧ 0
< (π / 6) ∧ (π / 6) < (π / 2)))) | 
| 68 | 65, 66, 67 | syl2an 289 | 
. . . . . . . . . . . . 13
⊢ ((0
∈ ℝ ∧ (π / 2) ∈ ℝ) → ((π / 6) ∈
(0(,)(π / 2)) ↔ ((π / 6) ∈ ℝ ∧ 0 < (π / 6)
∧ (π / 6) < (π / 2)))) | 
| 69 | 63, 64, 68 | mp2an 426 | 
. . . . . . . . . . . 12
⊢ ((π /
6) ∈ (0(,)(π / 2)) ↔ ((π / 6) ∈ ℝ ∧ 0 < (π
/ 6) ∧ (π / 6) < (π / 2))) | 
| 70 | 7, 53, 62, 69 | mpbir3an 1181 | 
. . . . . . . . . . 11
⊢ (π /
6) ∈ (0(,)(π / 2)) | 
| 71 |   | sincosq1sgn 15062 | 
. . . . . . . . . . 11
⊢ ((π /
6) ∈ (0(,)(π / 2)) → (0 < (sin‘(π / 6)) ∧ 0 <
(cos‘(π / 6)))) | 
| 72 | 70, 71 | ax-mp 5 | 
. . . . . . . . . 10
⊢ (0 <
(sin‘(π / 6)) ∧ 0 < (cos‘(π / 6))) | 
| 73 | 72 | simpri 113 | 
. . . . . . . . 9
⊢ 0 <
(cos‘(π / 6)) | 
| 74 | 15, 73 | gt0ap0ii 8655 | 
. . . . . . . 8
⊢
(cos‘(π / 6)) # 0 | 
| 75 | 16, 74 | pm3.2i 272 | 
. . . . . . 7
⊢
((cos‘(π / 6)) ∈ ℂ ∧ (cos‘(π / 6)) #
0) | 
| 76 |   | mulcanap2 8693 | 
. . . . . . 7
⊢ (((2
· (sin‘(π / 6))) ∈ ℂ ∧ 1 ∈ ℂ ∧
((cos‘(π / 6)) ∈ ℂ ∧ (cos‘(π / 6)) # 0))
→ (((2 · (sin‘(π / 6))) · (cos‘(π / 6))) =
(1 · (cos‘(π / 6))) ↔ (2 · (sin‘(π / 6)))
= 1)) | 
| 77 | 51, 28, 75, 76 | mp3an 1348 | 
. . . . . 6
⊢ (((2
· (sin‘(π / 6))) · (cos‘(π / 6))) = (1 ·
(cos‘(π / 6))) ↔ (2 · (sin‘(π / 6))) =
1) | 
| 78 | 50, 77 | mpbi 145 | 
. . . . 5
⊢ (2
· (sin‘(π / 6))) = 1 | 
| 79 | 78 | a1i 9 | 
. . . 4
⊢ (⊤
→ (2 · (sin‘(π / 6))) = 1) | 
| 80 | 2, 11, 13, 79 | mvllmulapd 8869 | 
. . 3
⊢ (⊤
→ (sin‘(π / 6)) = (1 / 2)) | 
| 81 | 80 | mptru 1373 | 
. 2
⊢
(sin‘(π / 6)) = (1 / 2) | 
| 82 |   | 3re 9064 | 
. . . . . . . 8
⊢ 3 ∈
ℝ | 
| 83 |   | 3pos 9084 | 
. . . . . . . 8
⊢ 0 <
3 | 
| 84 | 82, 83 | sqrtpclii 11295 | 
. . . . . . 7
⊢
(√‘3) ∈ ℝ | 
| 85 | 84 | recni 8038 | 
. . . . . 6
⊢
(√‘3) ∈ ℂ | 
| 86 | 85, 1, 12 | sqdivapi 10715 | 
. . . . 5
⊢
(((√‘3) / 2)↑2) = (((√‘3)↑2) /
(2↑2)) | 
| 87 | 63, 82, 83 | ltleii 8129 | 
. . . . . . 7
⊢ 0 ≤
3 | 
| 88 | 82 | sqsqrti 11289 | 
. . . . . . 7
⊢ (0 ≤ 3
→ ((√‘3)↑2) = 3) | 
| 89 | 87, 88 | ax-mp 5 | 
. . . . . 6
⊢
((√‘3)↑2) = 3 | 
| 90 |   | sq2 10727 | 
. . . . . 6
⊢
(2↑2) = 4 | 
| 91 | 89, 90 | oveq12i 5934 | 
. . . . 5
⊢
(((√‘3)↑2) / (2↑2)) = (3 / 4) | 
| 92 | 86, 91 | eqtri 2217 | 
. . . 4
⊢
(((√‘3) / 2)↑2) = (3 / 4) | 
| 93 | 92 | fveq2i 5561 | 
. . 3
⊢
(√‘(((√‘3) / 2)↑2)) = (√‘(3 /
4)) | 
| 94 | 82 | sqrtge0i 11290 | 
. . . . . 6
⊢ (0 ≤ 3
→ 0 ≤ (√‘3)) | 
| 95 | 87, 94 | ax-mp 5 | 
. . . . 5
⊢ 0 ≤
(√‘3) | 
| 96 | 84, 55 | divge0i 8938 | 
. . . . 5
⊢ ((0 ≤
(√‘3) ∧ 0 < 2) → 0 ≤ ((√‘3) /
2)) | 
| 97 | 95, 56, 96 | mp2an 426 | 
. . . 4
⊢ 0 ≤
((√‘3) / 2) | 
| 98 | 84, 55, 12 | redivclapi 8806 | 
. . . . 5
⊢
((√‘3) / 2) ∈ ℝ | 
| 99 | 98 | sqrtsqi 11288 | 
. . . 4
⊢ (0 ≤
((√‘3) / 2) → (√‘(((√‘3) / 2)↑2))
= ((√‘3) / 2)) | 
| 100 | 97, 99 | ax-mp 5 | 
. . 3
⊢
(√‘(((√‘3) / 2)↑2)) = ((√‘3) /
2) | 
| 101 |   | 4cn 9068 | 
. . . . . . . 8
⊢ 4 ∈
ℂ | 
| 102 |   | 4ap0 9089 | 
. . . . . . . 8
⊢ 4 #
0 | 
| 103 | 101, 102 | dividapi 8772 | 
. . . . . . 7
⊢ (4 / 4) =
1 | 
| 104 | 103 | oveq1i 5932 | 
. . . . . 6
⊢ ((4 / 4)
− (1 / 4)) = (1 − (1 / 4)) | 
| 105 | 101, 102 | pm3.2i 272 | 
. . . . . . . 8
⊢ (4 ∈
ℂ ∧ 4 # 0) | 
| 106 |   | divsubdirap 8735 | 
. . . . . . . 8
⊢ ((4
∈ ℂ ∧ 1 ∈ ℂ ∧ (4 ∈ ℂ ∧ 4 # 0))
→ ((4 − 1) / 4) = ((4 / 4) − (1 / 4))) | 
| 107 | 101, 28, 105, 106 | mp3an 1348 | 
. . . . . . 7
⊢ ((4
− 1) / 4) = ((4 / 4) − (1 / 4)) | 
| 108 |   | 4m1e3 9111 | 
. . . . . . . 8
⊢ (4
− 1) = 3 | 
| 109 | 108 | oveq1i 5932 | 
. . . . . . 7
⊢ ((4
− 1) / 4) = (3 / 4) | 
| 110 | 107, 109 | eqtr3i 2219 | 
. . . . . 6
⊢ ((4 / 4)
− (1 / 4)) = (3 / 4) | 
| 111 | 101, 102 | recclapi 8769 | 
. . . . . . 7
⊢ (1 / 4)
∈ ℂ | 
| 112 | 16 | sqcli 10712 | 
. . . . . . 7
⊢
((cos‘(π / 6))↑2) ∈ ℂ | 
| 113 | 81 | oveq1i 5932 | 
. . . . . . . . . 10
⊢
((sin‘(π / 6))↑2) = ((1 / 2)↑2) | 
| 114 |   | 2z 9354 | 
. . . . . . . . . . 11
⊢ 2 ∈
ℤ | 
| 115 |   | exprecap 10672 | 
. . . . . . . . . . 11
⊢ ((2
∈ ℂ ∧ 2 # 0 ∧ 2 ∈ ℤ) → ((1 / 2)↑2) = (1
/ (2↑2))) | 
| 116 | 1, 12, 114, 115 | mp3an 1348 | 
. . . . . . . . . 10
⊢ ((1 /
2)↑2) = (1 / (2↑2)) | 
| 117 | 90 | oveq2i 5933 | 
. . . . . . . . . 10
⊢ (1 /
(2↑2)) = (1 / 4) | 
| 118 | 113, 116,
117 | 3eqtri 2221 | 
. . . . . . . . 9
⊢
((sin‘(π / 6))↑2) = (1 / 4) | 
| 119 | 118 | oveq1i 5932 | 
. . . . . . . 8
⊢
(((sin‘(π / 6))↑2) + ((cos‘(π / 6))↑2)) =
((1 / 4) + ((cos‘(π / 6))↑2)) | 
| 120 |   | sincossq 11913 | 
. . . . . . . . 9
⊢ ((π /
6) ∈ ℂ → (((sin‘(π / 6))↑2) + ((cos‘(π /
6))↑2)) = 1) | 
| 121 | 8, 120 | ax-mp 5 | 
. . . . . . . 8
⊢
(((sin‘(π / 6))↑2) + ((cos‘(π / 6))↑2)) =
1 | 
| 122 | 119, 121 | eqtr3i 2219 | 
. . . . . . 7
⊢ ((1 / 4)
+ ((cos‘(π / 6))↑2)) = 1 | 
| 123 | 28, 111, 112, 122 | subaddrii 8315 | 
. . . . . 6
⊢ (1
− (1 / 4)) = ((cos‘(π / 6))↑2) | 
| 124 | 104, 110,
123 | 3eqtr3ri 2226 | 
. . . . 5
⊢
((cos‘(π / 6))↑2) = (3 / 4) | 
| 125 | 124 | fveq2i 5561 | 
. . . 4
⊢
(√‘((cos‘(π / 6))↑2)) = (√‘(3 /
4)) | 
| 126 | 63, 15, 73 | ltleii 8129 | 
. . . . 5
⊢ 0 ≤
(cos‘(π / 6)) | 
| 127 | 15 | sqrtsqi 11288 | 
. . . . 5
⊢ (0 ≤
(cos‘(π / 6)) → (√‘((cos‘(π / 6))↑2)) =
(cos‘(π / 6))) | 
| 128 | 126, 127 | ax-mp 5 | 
. . . 4
⊢
(√‘((cos‘(π / 6))↑2)) = (cos‘(π /
6)) | 
| 129 | 125, 128 | eqtr3i 2219 | 
. . 3
⊢
(√‘(3 / 4)) = (cos‘(π / 6)) | 
| 130 | 93, 100, 129 | 3eqtr3ri 2226 | 
. 2
⊢
(cos‘(π / 6)) = ((√‘3) / 2) | 
| 131 | 81, 130 | pm3.2i 272 | 
1
⊢
((sin‘(π / 6)) = (1 / 2) ∧ (cos‘(π / 6)) =
((√‘3) / 2)) |