ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sincos6thpi GIF version

Theorem sincos6thpi 15510
Description: The sine and cosine of π / 6. (Contributed by Paul Chapman, 25-Jan-2008.) (Revised by Wolf Lammen, 24-Sep-2020.)
Assertion
Ref Expression
sincos6thpi ((sin‘(π / 6)) = (1 / 2) ∧ (cos‘(π / 6)) = ((√‘3) / 2))

Proof of Theorem sincos6thpi
StepHypRef Expression
1 2cn 9177 . . . . 5 2 ∈ ℂ
21a1i 9 . . . 4 (⊤ → 2 ∈ ℂ)
3 pire 15454 . . . . . . . 8 π ∈ ℝ
4 6re 9187 . . . . . . . 8 6 ∈ ℝ
5 6pos 9207 . . . . . . . . 9 0 < 6
64, 5gt0ap0ii 8771 . . . . . . . 8 6 # 0
73, 4, 6redivclapi 8922 . . . . . . 7 (π / 6) ∈ ℝ
87recni 8154 . . . . . 6 (π / 6) ∈ ℂ
9 sincl 12212 . . . . . 6 ((π / 6) ∈ ℂ → (sin‘(π / 6)) ∈ ℂ)
108, 9ax-mp 5 . . . . 5 (sin‘(π / 6)) ∈ ℂ
1110a1i 9 . . . 4 (⊤ → (sin‘(π / 6)) ∈ ℂ)
12 2ap0 9199 . . . . 5 2 # 0
1312a1i 9 . . . 4 (⊤ → 2 # 0)
14 recoscl 12227 . . . . . . . . . . . 12 ((π / 6) ∈ ℝ → (cos‘(π / 6)) ∈ ℝ)
157, 14ax-mp 5 . . . . . . . . . . 11 (cos‘(π / 6)) ∈ ℝ
1615recni 8154 . . . . . . . . . 10 (cos‘(π / 6)) ∈ ℂ
171, 10, 16mulassi 8151 . . . . . . . . 9 ((2 · (sin‘(π / 6))) · (cos‘(π / 6))) = (2 · ((sin‘(π / 6)) · (cos‘(π / 6))))
18 sin2t 12255 . . . . . . . . . 10 ((π / 6) ∈ ℂ → (sin‘(2 · (π / 6))) = (2 · ((sin‘(π / 6)) · (cos‘(π / 6)))))
198, 18ax-mp 5 . . . . . . . . 9 (sin‘(2 · (π / 6))) = (2 · ((sin‘(π / 6)) · (cos‘(π / 6))))
2017, 19eqtr4i 2253 . . . . . . . 8 ((2 · (sin‘(π / 6))) · (cos‘(π / 6))) = (sin‘(2 · (π / 6)))
21 3cn 9181 . . . . . . . . . . . 12 3 ∈ ℂ
22 3ap0 9202 . . . . . . . . . . . 12 3 # 0
231, 21, 22divclapi 8897 . . . . . . . . . . 11 (2 / 3) ∈ ℂ
2421, 22recclapi 8885 . . . . . . . . . . 11 (1 / 3) ∈ ℂ
25 df-3 9166 . . . . . . . . . . . . 13 3 = (2 + 1)
2625oveq1i 6010 . . . . . . . . . . . 12 (3 / 3) = ((2 + 1) / 3)
2721, 22dividapi 8888 . . . . . . . . . . . 12 (3 / 3) = 1
28 ax-1cn 8088 . . . . . . . . . . . . 13 1 ∈ ℂ
291, 28, 21, 22divdirapi 8912 . . . . . . . . . . . 12 ((2 + 1) / 3) = ((2 / 3) + (1 / 3))
3026, 27, 293eqtr3ri 2259 . . . . . . . . . . 11 ((2 / 3) + (1 / 3)) = 1
31 sincosq1eq 15507 . . . . . . . . . . 11 (((2 / 3) ∈ ℂ ∧ (1 / 3) ∈ ℂ ∧ ((2 / 3) + (1 / 3)) = 1) → (sin‘((2 / 3) · (π / 2))) = (cos‘((1 / 3) · (π / 2))))
3223, 24, 30, 31mp3an 1371 . . . . . . . . . 10 (sin‘((2 / 3) · (π / 2))) = (cos‘((1 / 3) · (π / 2)))
33 picn 15455 . . . . . . . . . . . . 13 π ∈ ℂ
341, 21, 33, 1, 22, 12divmuldivapi 8915 . . . . . . . . . . . 12 ((2 / 3) · (π / 2)) = ((2 · π) / (3 · 2))
35 3t2e6 9263 . . . . . . . . . . . . 13 (3 · 2) = 6
3635oveq2i 6011 . . . . . . . . . . . 12 ((2 · π) / (3 · 2)) = ((2 · π) / 6)
37 6cn 9188 . . . . . . . . . . . . 13 6 ∈ ℂ
381, 33, 37, 6divassapi 8911 . . . . . . . . . . . 12 ((2 · π) / 6) = (2 · (π / 6))
3934, 36, 383eqtri 2254 . . . . . . . . . . 11 ((2 / 3) · (π / 2)) = (2 · (π / 6))
4039fveq2i 5629 . . . . . . . . . 10 (sin‘((2 / 3) · (π / 2))) = (sin‘(2 · (π / 6)))
4132, 40eqtr3i 2252 . . . . . . . . 9 (cos‘((1 / 3) · (π / 2))) = (sin‘(2 · (π / 6)))
4228, 21, 33, 1, 22, 12divmuldivapi 8915 . . . . . . . . . . 11 ((1 / 3) · (π / 2)) = ((1 · π) / (3 · 2))
4333mullidi 8145 . . . . . . . . . . . 12 (1 · π) = π
4443, 35oveq12i 6012 . . . . . . . . . . 11 ((1 · π) / (3 · 2)) = (π / 6)
4542, 44eqtri 2250 . . . . . . . . . 10 ((1 / 3) · (π / 2)) = (π / 6)
4645fveq2i 5629 . . . . . . . . 9 (cos‘((1 / 3) · (π / 2))) = (cos‘(π / 6))
4741, 46eqtr3i 2252 . . . . . . . 8 (sin‘(2 · (π / 6))) = (cos‘(π / 6))
4820, 47eqtri 2250 . . . . . . 7 ((2 · (sin‘(π / 6))) · (cos‘(π / 6))) = (cos‘(π / 6))
4916mullidi 8145 . . . . . . 7 (1 · (cos‘(π / 6))) = (cos‘(π / 6))
5048, 49eqtr4i 2253 . . . . . 6 ((2 · (sin‘(π / 6))) · (cos‘(π / 6))) = (1 · (cos‘(π / 6)))
511, 10mulcli 8147 . . . . . . 7 (2 · (sin‘(π / 6))) ∈ ℂ
52 pipos 15456 . . . . . . . . . . . . 13 0 < π
533, 4, 52, 5divgt0ii 9062 . . . . . . . . . . . 12 0 < (π / 6)
54 2lt6 9289 . . . . . . . . . . . . 13 2 < 6
55 2re 9176 . . . . . . . . . . . . . . 15 2 ∈ ℝ
56 2pos 9197 . . . . . . . . . . . . . . 15 0 < 2
5755, 56pm3.2i 272 . . . . . . . . . . . . . 14 (2 ∈ ℝ ∧ 0 < 2)
584, 5pm3.2i 272 . . . . . . . . . . . . . 14 (6 ∈ ℝ ∧ 0 < 6)
593, 52pm3.2i 272 . . . . . . . . . . . . . 14 (π ∈ ℝ ∧ 0 < π)
60 ltdiv2 9030 . . . . . . . . . . . . . 14 (((2 ∈ ℝ ∧ 0 < 2) ∧ (6 ∈ ℝ ∧ 0 < 6) ∧ (π ∈ ℝ ∧ 0 < π)) → (2 < 6 ↔ (π / 6) < (π / 2)))
6157, 58, 59, 60mp3an 1371 . . . . . . . . . . . . 13 (2 < 6 ↔ (π / 6) < (π / 2))
6254, 61mpbi 145 . . . . . . . . . . . 12 (π / 6) < (π / 2)
63 0re 8142 . . . . . . . . . . . . 13 0 ∈ ℝ
64 halfpire 15460 . . . . . . . . . . . . 13 (π / 2) ∈ ℝ
65 rexr 8188 . . . . . . . . . . . . . 14 (0 ∈ ℝ → 0 ∈ ℝ*)
66 rexr 8188 . . . . . . . . . . . . . 14 ((π / 2) ∈ ℝ → (π / 2) ∈ ℝ*)
67 elioo2 10113 . . . . . . . . . . . . . 14 ((0 ∈ ℝ* ∧ (π / 2) ∈ ℝ*) → ((π / 6) ∈ (0(,)(π / 2)) ↔ ((π / 6) ∈ ℝ ∧ 0 < (π / 6) ∧ (π / 6) < (π / 2))))
6865, 66, 67syl2an 289 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ (π / 2) ∈ ℝ) → ((π / 6) ∈ (0(,)(π / 2)) ↔ ((π / 6) ∈ ℝ ∧ 0 < (π / 6) ∧ (π / 6) < (π / 2))))
6963, 64, 68mp2an 426 . . . . . . . . . . . 12 ((π / 6) ∈ (0(,)(π / 2)) ↔ ((π / 6) ∈ ℝ ∧ 0 < (π / 6) ∧ (π / 6) < (π / 2)))
707, 53, 62, 69mpbir3an 1203 . . . . . . . . . . 11 (π / 6) ∈ (0(,)(π / 2))
71 sincosq1sgn 15494 . . . . . . . . . . 11 ((π / 6) ∈ (0(,)(π / 2)) → (0 < (sin‘(π / 6)) ∧ 0 < (cos‘(π / 6))))
7270, 71ax-mp 5 . . . . . . . . . 10 (0 < (sin‘(π / 6)) ∧ 0 < (cos‘(π / 6)))
7372simpri 113 . . . . . . . . 9 0 < (cos‘(π / 6))
7415, 73gt0ap0ii 8771 . . . . . . . 8 (cos‘(π / 6)) # 0
7516, 74pm3.2i 272 . . . . . . 7 ((cos‘(π / 6)) ∈ ℂ ∧ (cos‘(π / 6)) # 0)
76 mulcanap2 8809 . . . . . . 7 (((2 · (sin‘(π / 6))) ∈ ℂ ∧ 1 ∈ ℂ ∧ ((cos‘(π / 6)) ∈ ℂ ∧ (cos‘(π / 6)) # 0)) → (((2 · (sin‘(π / 6))) · (cos‘(π / 6))) = (1 · (cos‘(π / 6))) ↔ (2 · (sin‘(π / 6))) = 1))
7751, 28, 75, 76mp3an 1371 . . . . . 6 (((2 · (sin‘(π / 6))) · (cos‘(π / 6))) = (1 · (cos‘(π / 6))) ↔ (2 · (sin‘(π / 6))) = 1)
7850, 77mpbi 145 . . . . 5 (2 · (sin‘(π / 6))) = 1
7978a1i 9 . . . 4 (⊤ → (2 · (sin‘(π / 6))) = 1)
802, 11, 13, 79mvllmulapd 8985 . . 3 (⊤ → (sin‘(π / 6)) = (1 / 2))
8180mptru 1404 . 2 (sin‘(π / 6)) = (1 / 2)
82 3re 9180 . . . . . . . 8 3 ∈ ℝ
83 3pos 9200 . . . . . . . 8 0 < 3
8482, 83sqrtpclii 11636 . . . . . . 7 (√‘3) ∈ ℝ
8584recni 8154 . . . . . 6 (√‘3) ∈ ℂ
8685, 1, 12sqdivapi 10840 . . . . 5 (((√‘3) / 2)↑2) = (((√‘3)↑2) / (2↑2))
8763, 82, 83ltleii 8245 . . . . . . 7 0 ≤ 3
8882sqsqrti 11630 . . . . . . 7 (0 ≤ 3 → ((√‘3)↑2) = 3)
8987, 88ax-mp 5 . . . . . 6 ((√‘3)↑2) = 3
90 sq2 10852 . . . . . 6 (2↑2) = 4
9189, 90oveq12i 6012 . . . . 5 (((√‘3)↑2) / (2↑2)) = (3 / 4)
9286, 91eqtri 2250 . . . 4 (((√‘3) / 2)↑2) = (3 / 4)
9392fveq2i 5629 . . 3 (√‘(((√‘3) / 2)↑2)) = (√‘(3 / 4))
9482sqrtge0i 11631 . . . . . 6 (0 ≤ 3 → 0 ≤ (√‘3))
9587, 94ax-mp 5 . . . . 5 0 ≤ (√‘3)
9684, 55divge0i 9054 . . . . 5 ((0 ≤ (√‘3) ∧ 0 < 2) → 0 ≤ ((√‘3) / 2))
9795, 56, 96mp2an 426 . . . 4 0 ≤ ((√‘3) / 2)
9884, 55, 12redivclapi 8922 . . . . 5 ((√‘3) / 2) ∈ ℝ
9998sqrtsqi 11629 . . . 4 (0 ≤ ((√‘3) / 2) → (√‘(((√‘3) / 2)↑2)) = ((√‘3) / 2))
10097, 99ax-mp 5 . . 3 (√‘(((√‘3) / 2)↑2)) = ((√‘3) / 2)
101 4cn 9184 . . . . . . . 8 4 ∈ ℂ
102 4ap0 9205 . . . . . . . 8 4 # 0
103101, 102dividapi 8888 . . . . . . 7 (4 / 4) = 1
104103oveq1i 6010 . . . . . 6 ((4 / 4) − (1 / 4)) = (1 − (1 / 4))
105101, 102pm3.2i 272 . . . . . . . 8 (4 ∈ ℂ ∧ 4 # 0)
106 divsubdirap 8851 . . . . . . . 8 ((4 ∈ ℂ ∧ 1 ∈ ℂ ∧ (4 ∈ ℂ ∧ 4 # 0)) → ((4 − 1) / 4) = ((4 / 4) − (1 / 4)))
107101, 28, 105, 106mp3an 1371 . . . . . . 7 ((4 − 1) / 4) = ((4 / 4) − (1 / 4))
108 4m1e3 9227 . . . . . . . 8 (4 − 1) = 3
109108oveq1i 6010 . . . . . . 7 ((4 − 1) / 4) = (3 / 4)
110107, 109eqtr3i 2252 . . . . . 6 ((4 / 4) − (1 / 4)) = (3 / 4)
111101, 102recclapi 8885 . . . . . . 7 (1 / 4) ∈ ℂ
11216sqcli 10837 . . . . . . 7 ((cos‘(π / 6))↑2) ∈ ℂ
11381oveq1i 6010 . . . . . . . . . 10 ((sin‘(π / 6))↑2) = ((1 / 2)↑2)
114 2z 9470 . . . . . . . . . . 11 2 ∈ ℤ
115 exprecap 10797 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ 2 # 0 ∧ 2 ∈ ℤ) → ((1 / 2)↑2) = (1 / (2↑2)))
1161, 12, 114, 115mp3an 1371 . . . . . . . . . 10 ((1 / 2)↑2) = (1 / (2↑2))
11790oveq2i 6011 . . . . . . . . . 10 (1 / (2↑2)) = (1 / 4)
118113, 116, 1173eqtri 2254 . . . . . . . . 9 ((sin‘(π / 6))↑2) = (1 / 4)
119118oveq1i 6010 . . . . . . . 8 (((sin‘(π / 6))↑2) + ((cos‘(π / 6))↑2)) = ((1 / 4) + ((cos‘(π / 6))↑2))
120 sincossq 12254 . . . . . . . . 9 ((π / 6) ∈ ℂ → (((sin‘(π / 6))↑2) + ((cos‘(π / 6))↑2)) = 1)
1218, 120ax-mp 5 . . . . . . . 8 (((sin‘(π / 6))↑2) + ((cos‘(π / 6))↑2)) = 1
122119, 121eqtr3i 2252 . . . . . . 7 ((1 / 4) + ((cos‘(π / 6))↑2)) = 1
12328, 111, 112, 122subaddrii 8431 . . . . . 6 (1 − (1 / 4)) = ((cos‘(π / 6))↑2)
124104, 110, 1233eqtr3ri 2259 . . . . 5 ((cos‘(π / 6))↑2) = (3 / 4)
125124fveq2i 5629 . . . 4 (√‘((cos‘(π / 6))↑2)) = (√‘(3 / 4))
12663, 15, 73ltleii 8245 . . . . 5 0 ≤ (cos‘(π / 6))
12715sqrtsqi 11629 . . . . 5 (0 ≤ (cos‘(π / 6)) → (√‘((cos‘(π / 6))↑2)) = (cos‘(π / 6)))
128126, 127ax-mp 5 . . . 4 (√‘((cos‘(π / 6))↑2)) = (cos‘(π / 6))
129125, 128eqtr3i 2252 . . 3 (√‘(3 / 4)) = (cos‘(π / 6))
13093, 100, 1293eqtr3ri 2259 . 2 (cos‘(π / 6)) = ((√‘3) / 2)
13181, 130pm3.2i 272 1 ((sin‘(π / 6)) = (1 / 2) ∧ (cos‘(π / 6)) = ((√‘3) / 2))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  w3a 1002   = wceq 1395  wtru 1396  wcel 2200   class class class wbr 4082  cfv 5317  (class class class)co 6000  cc 7993  cr 7994  0cc0 7995  1c1 7996   + caddc 7998   · cmul 8000  *cxr 8176   < clt 8177  cle 8178  cmin 8313   # cap 8724   / cdiv 8815  2c2 9157  3c3 9158  4c4 9159  6c6 9161  cz 9442  (,)cioo 10080  cexp 10755  csqrt 11502  sincsin 12150  cosccos 12151  πcpi 12153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114  ax-caucvg 8115  ax-pre-suploc 8116  ax-addf 8117  ax-mulf 8118
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-disj 4059  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-isom 5326  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-of 6216  df-1st 6284  df-2nd 6285  df-recs 6449  df-irdg 6514  df-frec 6535  df-1o 6560  df-oadd 6564  df-er 6678  df-map 6795  df-pm 6796  df-en 6886  df-dom 6887  df-fin 6888  df-sup 7147  df-inf 7148  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-5 9168  df-6 9169  df-7 9170  df-8 9171  df-9 9172  df-n0 9366  df-z 9443  df-uz 9719  df-q 9811  df-rp 9846  df-xneg 9964  df-xadd 9965  df-ioo 10084  df-ioc 10085  df-ico 10086  df-icc 10087  df-fz 10201  df-fzo 10335  df-seqfrec 10665  df-exp 10756  df-fac 10943  df-bc 10965  df-ihash 10993  df-shft 11321  df-cj 11348  df-re 11349  df-im 11350  df-rsqrt 11504  df-abs 11505  df-clim 11785  df-sumdc 11860  df-ef 12154  df-sin 12156  df-cos 12157  df-pi 12159  df-rest 13269  df-topgen 13288  df-psmet 14501  df-xmet 14502  df-met 14503  df-bl 14504  df-mopn 14505  df-top 14666  df-topon 14679  df-bases 14711  df-ntr 14764  df-cn 14856  df-cnp 14857  df-tx 14921  df-cncf 15239  df-limced 15324  df-dvap 15325
This theorem is referenced by:  sincos3rdpi  15511  pigt3  15512
  Copyright terms: Public domain W3C validator