Proof of Theorem sincos6thpi
Step | Hyp | Ref
| Expression |
1 | | 2cn 8949 |
. . . . 5
⊢ 2 ∈
ℂ |
2 | 1 | a1i 9 |
. . . 4
⊢ (⊤
→ 2 ∈ ℂ) |
3 | | pire 13501 |
. . . . . . . 8
⊢ π
∈ ℝ |
4 | | 6re 8959 |
. . . . . . . 8
⊢ 6 ∈
ℝ |
5 | | 6pos 8979 |
. . . . . . . . 9
⊢ 0 <
6 |
6 | 4, 5 | gt0ap0ii 8547 |
. . . . . . . 8
⊢ 6 #
0 |
7 | 3, 4, 6 | redivclapi 8696 |
. . . . . . 7
⊢ (π /
6) ∈ ℝ |
8 | 7 | recni 7932 |
. . . . . 6
⊢ (π /
6) ∈ ℂ |
9 | | sincl 11669 |
. . . . . 6
⊢ ((π /
6) ∈ ℂ → (sin‘(π / 6)) ∈
ℂ) |
10 | 8, 9 | ax-mp 5 |
. . . . 5
⊢
(sin‘(π / 6)) ∈ ℂ |
11 | 10 | a1i 9 |
. . . 4
⊢ (⊤
→ (sin‘(π / 6)) ∈ ℂ) |
12 | | 2ap0 8971 |
. . . . 5
⊢ 2 #
0 |
13 | 12 | a1i 9 |
. . . 4
⊢ (⊤
→ 2 # 0) |
14 | | recoscl 11684 |
. . . . . . . . . . . 12
⊢ ((π /
6) ∈ ℝ → (cos‘(π / 6)) ∈
ℝ) |
15 | 7, 14 | ax-mp 5 |
. . . . . . . . . . 11
⊢
(cos‘(π / 6)) ∈ ℝ |
16 | 15 | recni 7932 |
. . . . . . . . . 10
⊢
(cos‘(π / 6)) ∈ ℂ |
17 | 1, 10, 16 | mulassi 7929 |
. . . . . . . . 9
⊢ ((2
· (sin‘(π / 6))) · (cos‘(π / 6))) = (2 ·
((sin‘(π / 6)) · (cos‘(π / 6)))) |
18 | | sin2t 11712 |
. . . . . . . . . 10
⊢ ((π /
6) ∈ ℂ → (sin‘(2 · (π / 6))) = (2 ·
((sin‘(π / 6)) · (cos‘(π / 6))))) |
19 | 8, 18 | ax-mp 5 |
. . . . . . . . 9
⊢
(sin‘(2 · (π / 6))) = (2 · ((sin‘(π /
6)) · (cos‘(π / 6)))) |
20 | 17, 19 | eqtr4i 2194 |
. . . . . . . 8
⊢ ((2
· (sin‘(π / 6))) · (cos‘(π / 6))) =
(sin‘(2 · (π / 6))) |
21 | | 3cn 8953 |
. . . . . . . . . . . 12
⊢ 3 ∈
ℂ |
22 | | 3ap0 8974 |
. . . . . . . . . . . 12
⊢ 3 #
0 |
23 | 1, 21, 22 | divclapi 8671 |
. . . . . . . . . . 11
⊢ (2 / 3)
∈ ℂ |
24 | 21, 22 | recclapi 8659 |
. . . . . . . . . . 11
⊢ (1 / 3)
∈ ℂ |
25 | | df-3 8938 |
. . . . . . . . . . . . 13
⊢ 3 = (2 +
1) |
26 | 25 | oveq1i 5863 |
. . . . . . . . . . . 12
⊢ (3 / 3) =
((2 + 1) / 3) |
27 | 21, 22 | dividapi 8662 |
. . . . . . . . . . . 12
⊢ (3 / 3) =
1 |
28 | | ax-1cn 7867 |
. . . . . . . . . . . . 13
⊢ 1 ∈
ℂ |
29 | 1, 28, 21, 22 | divdirapi 8686 |
. . . . . . . . . . . 12
⊢ ((2 + 1)
/ 3) = ((2 / 3) + (1 / 3)) |
30 | 26, 27, 29 | 3eqtr3ri 2200 |
. . . . . . . . . . 11
⊢ ((2 / 3)
+ (1 / 3)) = 1 |
31 | | sincosq1eq 13554 |
. . . . . . . . . . 11
⊢ (((2 / 3)
∈ ℂ ∧ (1 / 3) ∈ ℂ ∧ ((2 / 3) + (1 / 3)) = 1)
→ (sin‘((2 / 3) · (π / 2))) = (cos‘((1 / 3) ·
(π / 2)))) |
32 | 23, 24, 30, 31 | mp3an 1332 |
. . . . . . . . . 10
⊢
(sin‘((2 / 3) · (π / 2))) = (cos‘((1 / 3) ·
(π / 2))) |
33 | | picn 13502 |
. . . . . . . . . . . . 13
⊢ π
∈ ℂ |
34 | 1, 21, 33, 1, 22, 12 | divmuldivapi 8689 |
. . . . . . . . . . . 12
⊢ ((2 / 3)
· (π / 2)) = ((2 · π) / (3 · 2)) |
35 | | 3t2e6 9034 |
. . . . . . . . . . . . 13
⊢ (3
· 2) = 6 |
36 | 35 | oveq2i 5864 |
. . . . . . . . . . . 12
⊢ ((2
· π) / (3 · 2)) = ((2 · π) / 6) |
37 | | 6cn 8960 |
. . . . . . . . . . . . 13
⊢ 6 ∈
ℂ |
38 | 1, 33, 37, 6 | divassapi 8685 |
. . . . . . . . . . . 12
⊢ ((2
· π) / 6) = (2 · (π / 6)) |
39 | 34, 36, 38 | 3eqtri 2195 |
. . . . . . . . . . 11
⊢ ((2 / 3)
· (π / 2)) = (2 · (π / 6)) |
40 | 39 | fveq2i 5499 |
. . . . . . . . . 10
⊢
(sin‘((2 / 3) · (π / 2))) = (sin‘(2 · (π
/ 6))) |
41 | 32, 40 | eqtr3i 2193 |
. . . . . . . . 9
⊢
(cos‘((1 / 3) · (π / 2))) = (sin‘(2 · (π
/ 6))) |
42 | 28, 21, 33, 1, 22, 12 | divmuldivapi 8689 |
. . . . . . . . . . 11
⊢ ((1 / 3)
· (π / 2)) = ((1 · π) / (3 · 2)) |
43 | 33 | mulid2i 7923 |
. . . . . . . . . . . 12
⊢ (1
· π) = π |
44 | 43, 35 | oveq12i 5865 |
. . . . . . . . . . 11
⊢ ((1
· π) / (3 · 2)) = (π / 6) |
45 | 42, 44 | eqtri 2191 |
. . . . . . . . . 10
⊢ ((1 / 3)
· (π / 2)) = (π / 6) |
46 | 45 | fveq2i 5499 |
. . . . . . . . 9
⊢
(cos‘((1 / 3) · (π / 2))) = (cos‘(π /
6)) |
47 | 41, 46 | eqtr3i 2193 |
. . . . . . . 8
⊢
(sin‘(2 · (π / 6))) = (cos‘(π /
6)) |
48 | 20, 47 | eqtri 2191 |
. . . . . . 7
⊢ ((2
· (sin‘(π / 6))) · (cos‘(π / 6))) =
(cos‘(π / 6)) |
49 | 16 | mulid2i 7923 |
. . . . . . 7
⊢ (1
· (cos‘(π / 6))) = (cos‘(π / 6)) |
50 | 48, 49 | eqtr4i 2194 |
. . . . . 6
⊢ ((2
· (sin‘(π / 6))) · (cos‘(π / 6))) = (1 ·
(cos‘(π / 6))) |
51 | 1, 10 | mulcli 7925 |
. . . . . . 7
⊢ (2
· (sin‘(π / 6))) ∈ ℂ |
52 | | pipos 13503 |
. . . . . . . . . . . . 13
⊢ 0 <
π |
53 | 3, 4, 52, 5 | divgt0ii 8835 |
. . . . . . . . . . . 12
⊢ 0 <
(π / 6) |
54 | | 2lt6 9060 |
. . . . . . . . . . . . 13
⊢ 2 <
6 |
55 | | 2re 8948 |
. . . . . . . . . . . . . . 15
⊢ 2 ∈
ℝ |
56 | | 2pos 8969 |
. . . . . . . . . . . . . . 15
⊢ 0 <
2 |
57 | 55, 56 | pm3.2i 270 |
. . . . . . . . . . . . . 14
⊢ (2 ∈
ℝ ∧ 0 < 2) |
58 | 4, 5 | pm3.2i 270 |
. . . . . . . . . . . . . 14
⊢ (6 ∈
ℝ ∧ 0 < 6) |
59 | 3, 52 | pm3.2i 270 |
. . . . . . . . . . . . . 14
⊢ (π
∈ ℝ ∧ 0 < π) |
60 | | ltdiv2 8803 |
. . . . . . . . . . . . . 14
⊢ (((2
∈ ℝ ∧ 0 < 2) ∧ (6 ∈ ℝ ∧ 0 < 6) ∧
(π ∈ ℝ ∧ 0 < π)) → (2 < 6 ↔ (π / 6)
< (π / 2))) |
61 | 57, 58, 59, 60 | mp3an 1332 |
. . . . . . . . . . . . 13
⊢ (2 < 6
↔ (π / 6) < (π / 2)) |
62 | 54, 61 | mpbi 144 |
. . . . . . . . . . . 12
⊢ (π /
6) < (π / 2) |
63 | | 0re 7920 |
. . . . . . . . . . . . 13
⊢ 0 ∈
ℝ |
64 | | halfpire 13507 |
. . . . . . . . . . . . 13
⊢ (π /
2) ∈ ℝ |
65 | | rexr 7965 |
. . . . . . . . . . . . . 14
⊢ (0 ∈
ℝ → 0 ∈ ℝ*) |
66 | | rexr 7965 |
. . . . . . . . . . . . . 14
⊢ ((π /
2) ∈ ℝ → (π / 2) ∈
ℝ*) |
67 | | elioo2 9878 |
. . . . . . . . . . . . . 14
⊢ ((0
∈ ℝ* ∧ (π / 2) ∈ ℝ*) →
((π / 6) ∈ (0(,)(π / 2)) ↔ ((π / 6) ∈ ℝ ∧ 0
< (π / 6) ∧ (π / 6) < (π / 2)))) |
68 | 65, 66, 67 | syl2an 287 |
. . . . . . . . . . . . 13
⊢ ((0
∈ ℝ ∧ (π / 2) ∈ ℝ) → ((π / 6) ∈
(0(,)(π / 2)) ↔ ((π / 6) ∈ ℝ ∧ 0 < (π / 6)
∧ (π / 6) < (π / 2)))) |
69 | 63, 64, 68 | mp2an 424 |
. . . . . . . . . . . 12
⊢ ((π /
6) ∈ (0(,)(π / 2)) ↔ ((π / 6) ∈ ℝ ∧ 0 < (π
/ 6) ∧ (π / 6) < (π / 2))) |
70 | 7, 53, 62, 69 | mpbir3an 1174 |
. . . . . . . . . . 11
⊢ (π /
6) ∈ (0(,)(π / 2)) |
71 | | sincosq1sgn 13541 |
. . . . . . . . . . 11
⊢ ((π /
6) ∈ (0(,)(π / 2)) → (0 < (sin‘(π / 6)) ∧ 0 <
(cos‘(π / 6)))) |
72 | 70, 71 | ax-mp 5 |
. . . . . . . . . 10
⊢ (0 <
(sin‘(π / 6)) ∧ 0 < (cos‘(π / 6))) |
73 | 72 | simpri 112 |
. . . . . . . . 9
⊢ 0 <
(cos‘(π / 6)) |
74 | 15, 73 | gt0ap0ii 8547 |
. . . . . . . 8
⊢
(cos‘(π / 6)) # 0 |
75 | 16, 74 | pm3.2i 270 |
. . . . . . 7
⊢
((cos‘(π / 6)) ∈ ℂ ∧ (cos‘(π / 6)) #
0) |
76 | | mulcanap2 8584 |
. . . . . . 7
⊢ (((2
· (sin‘(π / 6))) ∈ ℂ ∧ 1 ∈ ℂ ∧
((cos‘(π / 6)) ∈ ℂ ∧ (cos‘(π / 6)) # 0))
→ (((2 · (sin‘(π / 6))) · (cos‘(π / 6))) =
(1 · (cos‘(π / 6))) ↔ (2 · (sin‘(π / 6)))
= 1)) |
77 | 51, 28, 75, 76 | mp3an 1332 |
. . . . . 6
⊢ (((2
· (sin‘(π / 6))) · (cos‘(π / 6))) = (1 ·
(cos‘(π / 6))) ↔ (2 · (sin‘(π / 6))) =
1) |
78 | 50, 77 | mpbi 144 |
. . . . 5
⊢ (2
· (sin‘(π / 6))) = 1 |
79 | 78 | a1i 9 |
. . . 4
⊢ (⊤
→ (2 · (sin‘(π / 6))) = 1) |
80 | 2, 11, 13, 79 | mvllmulapd 8759 |
. . 3
⊢ (⊤
→ (sin‘(π / 6)) = (1 / 2)) |
81 | 80 | mptru 1357 |
. 2
⊢
(sin‘(π / 6)) = (1 / 2) |
82 | | 3re 8952 |
. . . . . . . 8
⊢ 3 ∈
ℝ |
83 | | 3pos 8972 |
. . . . . . . 8
⊢ 0 <
3 |
84 | 82, 83 | sqrtpclii 11094 |
. . . . . . 7
⊢
(√‘3) ∈ ℝ |
85 | 84 | recni 7932 |
. . . . . 6
⊢
(√‘3) ∈ ℂ |
86 | 85, 1, 12 | sqdivapi 10559 |
. . . . 5
⊢
(((√‘3) / 2)↑2) = (((√‘3)↑2) /
(2↑2)) |
87 | 63, 82, 83 | ltleii 8022 |
. . . . . . 7
⊢ 0 ≤
3 |
88 | 82 | sqsqrti 11088 |
. . . . . . 7
⊢ (0 ≤ 3
→ ((√‘3)↑2) = 3) |
89 | 87, 88 | ax-mp 5 |
. . . . . 6
⊢
((√‘3)↑2) = 3 |
90 | | sq2 10571 |
. . . . . 6
⊢
(2↑2) = 4 |
91 | 89, 90 | oveq12i 5865 |
. . . . 5
⊢
(((√‘3)↑2) / (2↑2)) = (3 / 4) |
92 | 86, 91 | eqtri 2191 |
. . . 4
⊢
(((√‘3) / 2)↑2) = (3 / 4) |
93 | 92 | fveq2i 5499 |
. . 3
⊢
(√‘(((√‘3) / 2)↑2)) = (√‘(3 /
4)) |
94 | 82 | sqrtge0i 11089 |
. . . . . 6
⊢ (0 ≤ 3
→ 0 ≤ (√‘3)) |
95 | 87, 94 | ax-mp 5 |
. . . . 5
⊢ 0 ≤
(√‘3) |
96 | 84, 55 | divge0i 8827 |
. . . . 5
⊢ ((0 ≤
(√‘3) ∧ 0 < 2) → 0 ≤ ((√‘3) /
2)) |
97 | 95, 56, 96 | mp2an 424 |
. . . 4
⊢ 0 ≤
((√‘3) / 2) |
98 | 84, 55, 12 | redivclapi 8696 |
. . . . 5
⊢
((√‘3) / 2) ∈ ℝ |
99 | 98 | sqrtsqi 11087 |
. . . 4
⊢ (0 ≤
((√‘3) / 2) → (√‘(((√‘3) / 2)↑2))
= ((√‘3) / 2)) |
100 | 97, 99 | ax-mp 5 |
. . 3
⊢
(√‘(((√‘3) / 2)↑2)) = ((√‘3) /
2) |
101 | | 4cn 8956 |
. . . . . . . 8
⊢ 4 ∈
ℂ |
102 | | 4ap0 8977 |
. . . . . . . 8
⊢ 4 #
0 |
103 | 101, 102 | dividapi 8662 |
. . . . . . 7
⊢ (4 / 4) =
1 |
104 | 103 | oveq1i 5863 |
. . . . . 6
⊢ ((4 / 4)
− (1 / 4)) = (1 − (1 / 4)) |
105 | 101, 102 | pm3.2i 270 |
. . . . . . . 8
⊢ (4 ∈
ℂ ∧ 4 # 0) |
106 | | divsubdirap 8625 |
. . . . . . . 8
⊢ ((4
∈ ℂ ∧ 1 ∈ ℂ ∧ (4 ∈ ℂ ∧ 4 # 0))
→ ((4 − 1) / 4) = ((4 / 4) − (1 / 4))) |
107 | 101, 28, 105, 106 | mp3an 1332 |
. . . . . . 7
⊢ ((4
− 1) / 4) = ((4 / 4) − (1 / 4)) |
108 | | 4m1e3 8999 |
. . . . . . . 8
⊢ (4
− 1) = 3 |
109 | 108 | oveq1i 5863 |
. . . . . . 7
⊢ ((4
− 1) / 4) = (3 / 4) |
110 | 107, 109 | eqtr3i 2193 |
. . . . . 6
⊢ ((4 / 4)
− (1 / 4)) = (3 / 4) |
111 | 101, 102 | recclapi 8659 |
. . . . . . 7
⊢ (1 / 4)
∈ ℂ |
112 | 16 | sqcli 10556 |
. . . . . . 7
⊢
((cos‘(π / 6))↑2) ∈ ℂ |
113 | 81 | oveq1i 5863 |
. . . . . . . . . 10
⊢
((sin‘(π / 6))↑2) = ((1 / 2)↑2) |
114 | | 2z 9240 |
. . . . . . . . . . 11
⊢ 2 ∈
ℤ |
115 | | exprecap 10517 |
. . . . . . . . . . 11
⊢ ((2
∈ ℂ ∧ 2 # 0 ∧ 2 ∈ ℤ) → ((1 / 2)↑2) = (1
/ (2↑2))) |
116 | 1, 12, 114, 115 | mp3an 1332 |
. . . . . . . . . 10
⊢ ((1 /
2)↑2) = (1 / (2↑2)) |
117 | 90 | oveq2i 5864 |
. . . . . . . . . 10
⊢ (1 /
(2↑2)) = (1 / 4) |
118 | 113, 116,
117 | 3eqtri 2195 |
. . . . . . . . 9
⊢
((sin‘(π / 6))↑2) = (1 / 4) |
119 | 118 | oveq1i 5863 |
. . . . . . . 8
⊢
(((sin‘(π / 6))↑2) + ((cos‘(π / 6))↑2)) =
((1 / 4) + ((cos‘(π / 6))↑2)) |
120 | | sincossq 11711 |
. . . . . . . . 9
⊢ ((π /
6) ∈ ℂ → (((sin‘(π / 6))↑2) + ((cos‘(π /
6))↑2)) = 1) |
121 | 8, 120 | ax-mp 5 |
. . . . . . . 8
⊢
(((sin‘(π / 6))↑2) + ((cos‘(π / 6))↑2)) =
1 |
122 | 119, 121 | eqtr3i 2193 |
. . . . . . 7
⊢ ((1 / 4)
+ ((cos‘(π / 6))↑2)) = 1 |
123 | 28, 111, 112, 122 | subaddrii 8208 |
. . . . . 6
⊢ (1
− (1 / 4)) = ((cos‘(π / 6))↑2) |
124 | 104, 110,
123 | 3eqtr3ri 2200 |
. . . . 5
⊢
((cos‘(π / 6))↑2) = (3 / 4) |
125 | 124 | fveq2i 5499 |
. . . 4
⊢
(√‘((cos‘(π / 6))↑2)) = (√‘(3 /
4)) |
126 | 63, 15, 73 | ltleii 8022 |
. . . . 5
⊢ 0 ≤
(cos‘(π / 6)) |
127 | 15 | sqrtsqi 11087 |
. . . . 5
⊢ (0 ≤
(cos‘(π / 6)) → (√‘((cos‘(π / 6))↑2)) =
(cos‘(π / 6))) |
128 | 126, 127 | ax-mp 5 |
. . . 4
⊢
(√‘((cos‘(π / 6))↑2)) = (cos‘(π /
6)) |
129 | 125, 128 | eqtr3i 2193 |
. . 3
⊢
(√‘(3 / 4)) = (cos‘(π / 6)) |
130 | 93, 100, 129 | 3eqtr3ri 2200 |
. 2
⊢
(cos‘(π / 6)) = ((√‘3) / 2) |
131 | 81, 130 | pm3.2i 270 |
1
⊢
((sin‘(π / 6)) = (1 / 2) ∧ (cos‘(π / 6)) =
((√‘3) / 2)) |