| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3dec | GIF version | ||
| Description: A "decimal constructor" which is used to build up "decimal integers" or "numeric terms" in base 10 with 3 "digits". (Contributed by AV, 14-Jun-2021.) (Revised by AV, 1-Aug-2021.) |
| Ref | Expression |
|---|---|
| 3dec.a | ⊢ 𝐴 ∈ ℕ0 |
| 3dec.b | ⊢ 𝐵 ∈ ℕ0 |
| Ref | Expression |
|---|---|
| 3dec | ⊢ ;;𝐴𝐵𝐶 = ((((;10↑2) · 𝐴) + (;10 · 𝐵)) + 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfdec10 9522 | . 2 ⊢ ;;𝐴𝐵𝐶 = ((;10 · ;𝐴𝐵) + 𝐶) | |
| 2 | dfdec10 9522 | . . . . . 6 ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) | |
| 3 | 2 | oveq2i 5967 | . . . . 5 ⊢ (;10 · ;𝐴𝐵) = (;10 · ((;10 · 𝐴) + 𝐵)) |
| 4 | 1nn 9062 | . . . . . . . 8 ⊢ 1 ∈ ℕ | |
| 5 | 4 | decnncl2 9542 | . . . . . . 7 ⊢ ;10 ∈ ℕ |
| 6 | 5 | nncni 9061 | . . . . . 6 ⊢ ;10 ∈ ℂ |
| 7 | 3dec.a | . . . . . . . 8 ⊢ 𝐴 ∈ ℕ0 | |
| 8 | 7 | nn0cni 9322 | . . . . . . 7 ⊢ 𝐴 ∈ ℂ |
| 9 | 6, 8 | mulcli 8092 | . . . . . 6 ⊢ (;10 · 𝐴) ∈ ℂ |
| 10 | 3dec.b | . . . . . . 7 ⊢ 𝐵 ∈ ℕ0 | |
| 11 | 10 | nn0cni 9322 | . . . . . 6 ⊢ 𝐵 ∈ ℂ |
| 12 | 6, 9, 11 | adddii 8097 | . . . . 5 ⊢ (;10 · ((;10 · 𝐴) + 𝐵)) = ((;10 · (;10 · 𝐴)) + (;10 · 𝐵)) |
| 13 | 3, 12 | eqtri 2227 | . . . 4 ⊢ (;10 · ;𝐴𝐵) = ((;10 · (;10 · 𝐴)) + (;10 · 𝐵)) |
| 14 | 6, 6, 8 | mulassi 8096 | . . . . . . 7 ⊢ ((;10 · ;10) · 𝐴) = (;10 · (;10 · 𝐴)) |
| 15 | 14 | eqcomi 2210 | . . . . . 6 ⊢ (;10 · (;10 · 𝐴)) = ((;10 · ;10) · 𝐴) |
| 16 | 6 | sqvali 10781 | . . . . . . . 8 ⊢ (;10↑2) = (;10 · ;10) |
| 17 | 16 | eqcomi 2210 | . . . . . . 7 ⊢ (;10 · ;10) = (;10↑2) |
| 18 | 17 | oveq1i 5966 | . . . . . 6 ⊢ ((;10 · ;10) · 𝐴) = ((;10↑2) · 𝐴) |
| 19 | 15, 18 | eqtri 2227 | . . . . 5 ⊢ (;10 · (;10 · 𝐴)) = ((;10↑2) · 𝐴) |
| 20 | 19 | oveq1i 5966 | . . . 4 ⊢ ((;10 · (;10 · 𝐴)) + (;10 · 𝐵)) = (((;10↑2) · 𝐴) + (;10 · 𝐵)) |
| 21 | 13, 20 | eqtri 2227 | . . 3 ⊢ (;10 · ;𝐴𝐵) = (((;10↑2) · 𝐴) + (;10 · 𝐵)) |
| 22 | 21 | oveq1i 5966 | . 2 ⊢ ((;10 · ;𝐴𝐵) + 𝐶) = ((((;10↑2) · 𝐴) + (;10 · 𝐵)) + 𝐶) |
| 23 | 1, 22 | eqtri 2227 | 1 ⊢ ;;𝐴𝐵𝐶 = ((((;10↑2) · 𝐴) + (;10 · 𝐵)) + 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∈ wcel 2177 (class class class)co 5956 0cc0 7940 1c1 7941 + caddc 7943 · cmul 7945 2c2 9102 ℕ0cn0 9310 ;cdc 9519 ↑cexp 10700 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4166 ax-sep 4169 ax-nul 4177 ax-pow 4225 ax-pr 4260 ax-un 4487 ax-setind 4592 ax-iinf 4643 ax-cnex 8031 ax-resscn 8032 ax-1cn 8033 ax-1re 8034 ax-icn 8035 ax-addcl 8036 ax-addrcl 8037 ax-mulcl 8038 ax-mulrcl 8039 ax-addcom 8040 ax-mulcom 8041 ax-addass 8042 ax-mulass 8043 ax-distr 8044 ax-i2m1 8045 ax-0lt1 8046 ax-1rid 8047 ax-0id 8048 ax-rnegex 8049 ax-precex 8050 ax-cnre 8051 ax-pre-ltirr 8052 ax-pre-ltwlin 8053 ax-pre-lttrn 8054 ax-pre-apti 8055 ax-pre-ltadd 8056 ax-pre-mulgt0 8057 ax-pre-mulext 8058 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-int 3891 df-iun 3934 df-br 4051 df-opab 4113 df-mpt 4114 df-tr 4150 df-id 4347 df-po 4350 df-iso 4351 df-iord 4420 df-on 4422 df-ilim 4423 df-suc 4425 df-iom 4646 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-rn 4693 df-res 4694 df-ima 4695 df-iota 5240 df-fun 5281 df-fn 5282 df-f 5283 df-f1 5284 df-fo 5285 df-f1o 5286 df-fv 5287 df-riota 5911 df-ov 5959 df-oprab 5960 df-mpo 5961 df-1st 6238 df-2nd 6239 df-recs 6403 df-frec 6489 df-pnf 8124 df-mnf 8125 df-xr 8126 df-ltxr 8127 df-le 8128 df-sub 8260 df-neg 8261 df-reap 8663 df-ap 8670 df-div 8761 df-inn 9052 df-2 9110 df-3 9111 df-4 9112 df-5 9113 df-6 9114 df-7 9115 df-8 9116 df-9 9117 df-n0 9311 df-z 9388 df-dec 9520 df-uz 9664 df-seqfrec 10610 df-exp 10701 |
| This theorem is referenced by: 3dvds2dec 12247 |
| Copyright terms: Public domain | W3C validator |