![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3dec | GIF version |
Description: A "decimal constructor" which is used to build up "decimal integers" or "numeric terms" in base 10 with 3 "digits". (Contributed by AV, 14-Jun-2021.) (Revised by AV, 1-Aug-2021.) |
Ref | Expression |
---|---|
3dec.a | ⊢ 𝐴 ∈ ℕ0 |
3dec.b | ⊢ 𝐵 ∈ ℕ0 |
Ref | Expression |
---|---|
3dec | ⊢ ;;𝐴𝐵𝐶 = ((((;10↑2) · 𝐴) + (;10 · 𝐵)) + 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdec10 8979 | . 2 ⊢ ;;𝐴𝐵𝐶 = ((;10 · ;𝐴𝐵) + 𝐶) | |
2 | dfdec10 8979 | . . . . . 6 ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) | |
3 | 2 | oveq2i 5701 | . . . . 5 ⊢ (;10 · ;𝐴𝐵) = (;10 · ((;10 · 𝐴) + 𝐵)) |
4 | 1nn 8531 | . . . . . . . 8 ⊢ 1 ∈ ℕ | |
5 | 4 | decnncl2 8999 | . . . . . . 7 ⊢ ;10 ∈ ℕ |
6 | 5 | nncni 8530 | . . . . . 6 ⊢ ;10 ∈ ℂ |
7 | 3dec.a | . . . . . . . 8 ⊢ 𝐴 ∈ ℕ0 | |
8 | 7 | nn0cni 8783 | . . . . . . 7 ⊢ 𝐴 ∈ ℂ |
9 | 6, 8 | mulcli 7590 | . . . . . 6 ⊢ (;10 · 𝐴) ∈ ℂ |
10 | 3dec.b | . . . . . . 7 ⊢ 𝐵 ∈ ℕ0 | |
11 | 10 | nn0cni 8783 | . . . . . 6 ⊢ 𝐵 ∈ ℂ |
12 | 6, 9, 11 | adddii 7595 | . . . . 5 ⊢ (;10 · ((;10 · 𝐴) + 𝐵)) = ((;10 · (;10 · 𝐴)) + (;10 · 𝐵)) |
13 | 3, 12 | eqtri 2115 | . . . 4 ⊢ (;10 · ;𝐴𝐵) = ((;10 · (;10 · 𝐴)) + (;10 · 𝐵)) |
14 | 6, 6, 8 | mulassi 7594 | . . . . . . 7 ⊢ ((;10 · ;10) · 𝐴) = (;10 · (;10 · 𝐴)) |
15 | 14 | eqcomi 2099 | . . . . . 6 ⊢ (;10 · (;10 · 𝐴)) = ((;10 · ;10) · 𝐴) |
16 | 6 | sqvali 10165 | . . . . . . . 8 ⊢ (;10↑2) = (;10 · ;10) |
17 | 16 | eqcomi 2099 | . . . . . . 7 ⊢ (;10 · ;10) = (;10↑2) |
18 | 17 | oveq1i 5700 | . . . . . 6 ⊢ ((;10 · ;10) · 𝐴) = ((;10↑2) · 𝐴) |
19 | 15, 18 | eqtri 2115 | . . . . 5 ⊢ (;10 · (;10 · 𝐴)) = ((;10↑2) · 𝐴) |
20 | 19 | oveq1i 5700 | . . . 4 ⊢ ((;10 · (;10 · 𝐴)) + (;10 · 𝐵)) = (((;10↑2) · 𝐴) + (;10 · 𝐵)) |
21 | 13, 20 | eqtri 2115 | . . 3 ⊢ (;10 · ;𝐴𝐵) = (((;10↑2) · 𝐴) + (;10 · 𝐵)) |
22 | 21 | oveq1i 5700 | . 2 ⊢ ((;10 · ;𝐴𝐵) + 𝐶) = ((((;10↑2) · 𝐴) + (;10 · 𝐵)) + 𝐶) |
23 | 1, 22 | eqtri 2115 | 1 ⊢ ;;𝐴𝐵𝐶 = ((((;10↑2) · 𝐴) + (;10 · 𝐵)) + 𝐶) |
Colors of variables: wff set class |
Syntax hints: = wceq 1296 ∈ wcel 1445 (class class class)co 5690 0cc0 7447 1c1 7448 + caddc 7450 · cmul 7452 2c2 8571 ℕ0cn0 8771 ;cdc 8976 ↑cexp 10085 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 582 ax-in2 583 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-13 1456 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-coll 3975 ax-sep 3978 ax-nul 3986 ax-pow 4030 ax-pr 4060 ax-un 4284 ax-setind 4381 ax-iinf 4431 ax-cnex 7533 ax-resscn 7534 ax-1cn 7535 ax-1re 7536 ax-icn 7537 ax-addcl 7538 ax-addrcl 7539 ax-mulcl 7540 ax-mulrcl 7541 ax-addcom 7542 ax-mulcom 7543 ax-addass 7544 ax-mulass 7545 ax-distr 7546 ax-i2m1 7547 ax-0lt1 7548 ax-1rid 7549 ax-0id 7550 ax-rnegex 7551 ax-precex 7552 ax-cnre 7553 ax-pre-ltirr 7554 ax-pre-ltwlin 7555 ax-pre-lttrn 7556 ax-pre-apti 7557 ax-pre-ltadd 7558 ax-pre-mulgt0 7559 ax-pre-mulext 7560 |
This theorem depends on definitions: df-bi 116 df-dc 784 df-3or 928 df-3an 929 df-tru 1299 df-fal 1302 df-nf 1402 df-sb 1700 df-eu 1958 df-mo 1959 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ne 2263 df-nel 2358 df-ral 2375 df-rex 2376 df-reu 2377 df-rmo 2378 df-rab 2379 df-v 2635 df-sbc 2855 df-csb 2948 df-dif 3015 df-un 3017 df-in 3019 df-ss 3026 df-nul 3303 df-if 3414 df-pw 3451 df-sn 3472 df-pr 3473 df-op 3475 df-uni 3676 df-int 3711 df-iun 3754 df-br 3868 df-opab 3922 df-mpt 3923 df-tr 3959 df-id 4144 df-po 4147 df-iso 4148 df-iord 4217 df-on 4219 df-ilim 4220 df-suc 4222 df-iom 4434 df-xp 4473 df-rel 4474 df-cnv 4475 df-co 4476 df-dm 4477 df-rn 4478 df-res 4479 df-ima 4480 df-iota 5014 df-fun 5051 df-fn 5052 df-f 5053 df-f1 5054 df-fo 5055 df-f1o 5056 df-fv 5057 df-riota 5646 df-ov 5693 df-oprab 5694 df-mpt2 5695 df-1st 5949 df-2nd 5950 df-recs 6108 df-frec 6194 df-pnf 7621 df-mnf 7622 df-xr 7623 df-ltxr 7624 df-le 7625 df-sub 7752 df-neg 7753 df-reap 8149 df-ap 8156 df-div 8237 df-inn 8521 df-2 8579 df-3 8580 df-4 8581 df-5 8582 df-6 8583 df-7 8584 df-8 8585 df-9 8586 df-n0 8772 df-z 8849 df-dec 8977 df-uz 9119 df-iseq 10002 df-seq3 10003 df-exp 10086 |
This theorem is referenced by: 3dvds2dec 11308 |
Copyright terms: Public domain | W3C validator |