ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3dvds2dec GIF version

Theorem 3dvds2dec 11470
Description: A decimal number is divisible by three iff the sum of its three "digits" is divisible by three. The term "digits" in its narrow sense is only correct if 𝐴, 𝐵 and 𝐶 actually are digits (i.e. nonnegative integers less than 10). However, this theorem holds for arbitrary nonnegative integers 𝐴, 𝐵 and 𝐶. (Contributed by AV, 14-Jun-2021.) (Revised by AV, 1-Aug-2021.)
Hypotheses
Ref Expression
3dvdsdec.a 𝐴 ∈ ℕ0
3dvdsdec.b 𝐵 ∈ ℕ0
3dvds2dec.c 𝐶 ∈ ℕ0
Assertion
Ref Expression
3dvds2dec (3 ∥ 𝐴𝐵𝐶 ↔ 3 ∥ ((𝐴 + 𝐵) + 𝐶))

Proof of Theorem 3dvds2dec
StepHypRef Expression
1 3dvdsdec.a . . . . 5 𝐴 ∈ ℕ0
2 3dvdsdec.b . . . . 5 𝐵 ∈ ℕ0
31, 23dec 10412 . . . 4 𝐴𝐵𝐶 = ((((10↑2) · 𝐴) + (10 · 𝐵)) + 𝐶)
4 sq10e99m1 10411 . . . . . . . 8 (10↑2) = (99 + 1)
54oveq1i 5750 . . . . . . 7 ((10↑2) · 𝐴) = ((99 + 1) · 𝐴)
6 9nn0 8955 . . . . . . . . . 10 9 ∈ ℕ0
76, 6deccl 9150 . . . . . . . . 9 99 ∈ ℕ0
87nn0cni 8943 . . . . . . . 8 99 ∈ ℂ
9 ax-1cn 7677 . . . . . . . 8 1 ∈ ℂ
101nn0cni 8943 . . . . . . . 8 𝐴 ∈ ℂ
118, 9, 10adddiri 7741 . . . . . . 7 ((99 + 1) · 𝐴) = ((99 · 𝐴) + (1 · 𝐴))
1210mulid2i 7733 . . . . . . . 8 (1 · 𝐴) = 𝐴
1312oveq2i 5751 . . . . . . 7 ((99 · 𝐴) + (1 · 𝐴)) = ((99 · 𝐴) + 𝐴)
145, 11, 133eqtri 2140 . . . . . 6 ((10↑2) · 𝐴) = ((99 · 𝐴) + 𝐴)
15 9p1e10 9138 . . . . . . . . 9 (9 + 1) = 10
1615eqcomi 2119 . . . . . . . 8 10 = (9 + 1)
1716oveq1i 5750 . . . . . . 7 (10 · 𝐵) = ((9 + 1) · 𝐵)
18 9cn 8768 . . . . . . . 8 9 ∈ ℂ
192nn0cni 8943 . . . . . . . 8 𝐵 ∈ ℂ
2018, 9, 19adddiri 7741 . . . . . . 7 ((9 + 1) · 𝐵) = ((9 · 𝐵) + (1 · 𝐵))
2119mulid2i 7733 . . . . . . . 8 (1 · 𝐵) = 𝐵
2221oveq2i 5751 . . . . . . 7 ((9 · 𝐵) + (1 · 𝐵)) = ((9 · 𝐵) + 𝐵)
2317, 20, 223eqtri 2140 . . . . . 6 (10 · 𝐵) = ((9 · 𝐵) + 𝐵)
2414, 23oveq12i 5752 . . . . 5 (((10↑2) · 𝐴) + (10 · 𝐵)) = (((99 · 𝐴) + 𝐴) + ((9 · 𝐵) + 𝐵))
2524oveq1i 5750 . . . 4 ((((10↑2) · 𝐴) + (10 · 𝐵)) + 𝐶) = ((((99 · 𝐴) + 𝐴) + ((9 · 𝐵) + 𝐵)) + 𝐶)
268, 10mulcli 7735 . . . . . 6 (99 · 𝐴) ∈ ℂ
2718, 19mulcli 7735 . . . . . 6 (9 · 𝐵) ∈ ℂ
28 add4 7887 . . . . . . 7 ((((99 · 𝐴) ∈ ℂ ∧ 𝐴 ∈ ℂ) ∧ ((9 · 𝐵) ∈ ℂ ∧ 𝐵 ∈ ℂ)) → (((99 · 𝐴) + 𝐴) + ((9 · 𝐵) + 𝐵)) = (((99 · 𝐴) + (9 · 𝐵)) + (𝐴 + 𝐵)))
2928oveq1d 5755 . . . . . 6 ((((99 · 𝐴) ∈ ℂ ∧ 𝐴 ∈ ℂ) ∧ ((9 · 𝐵) ∈ ℂ ∧ 𝐵 ∈ ℂ)) → ((((99 · 𝐴) + 𝐴) + ((9 · 𝐵) + 𝐵)) + 𝐶) = ((((99 · 𝐴) + (9 · 𝐵)) + (𝐴 + 𝐵)) + 𝐶))
3026, 10, 27, 19, 29mp4an 421 . . . . 5 ((((99 · 𝐴) + 𝐴) + ((9 · 𝐵) + 𝐵)) + 𝐶) = ((((99 · 𝐴) + (9 · 𝐵)) + (𝐴 + 𝐵)) + 𝐶)
3126, 27addcli 7734 . . . . . 6 ((99 · 𝐴) + (9 · 𝐵)) ∈ ℂ
3210, 19addcli 7734 . . . . . 6 (𝐴 + 𝐵) ∈ ℂ
33 3dvds2dec.c . . . . . . 7 𝐶 ∈ ℕ0
3433nn0cni 8943 . . . . . 6 𝐶 ∈ ℂ
3531, 32, 34addassi 7738 . . . . 5 ((((99 · 𝐴) + (9 · 𝐵)) + (𝐴 + 𝐵)) + 𝐶) = (((99 · 𝐴) + (9 · 𝐵)) + ((𝐴 + 𝐵) + 𝐶))
36 9t11e99 9265 . . . . . . . . . . 11 (9 · 11) = 99
3736eqcomi 2119 . . . . . . . . . 10 99 = (9 · 11)
3837oveq1i 5750 . . . . . . . . 9 (99 · 𝐴) = ((9 · 11) · 𝐴)
39 1nn0 8947 . . . . . . . . . . . 12 1 ∈ ℕ0
4039, 39deccl 9150 . . . . . . . . . . 11 11 ∈ ℕ0
4140nn0cni 8943 . . . . . . . . . 10 11 ∈ ℂ
4218, 41, 10mulassi 7739 . . . . . . . . 9 ((9 · 11) · 𝐴) = (9 · (11 · 𝐴))
4338, 42eqtri 2136 . . . . . . . 8 (99 · 𝐴) = (9 · (11 · 𝐴))
4443oveq1i 5750 . . . . . . 7 ((99 · 𝐴) + (9 · 𝐵)) = ((9 · (11 · 𝐴)) + (9 · 𝐵))
4541, 10mulcli 7735 . . . . . . . . 9 (11 · 𝐴) ∈ ℂ
4618, 45, 19adddii 7740 . . . . . . . 8 (9 · ((11 · 𝐴) + 𝐵)) = ((9 · (11 · 𝐴)) + (9 · 𝐵))
4746eqcomi 2119 . . . . . . 7 ((9 · (11 · 𝐴)) + (9 · 𝐵)) = (9 · ((11 · 𝐴) + 𝐵))
48 3t3e9 8831 . . . . . . . . . 10 (3 · 3) = 9
4948eqcomi 2119 . . . . . . . . 9 9 = (3 · 3)
5049oveq1i 5750 . . . . . . . 8 (9 · ((11 · 𝐴) + 𝐵)) = ((3 · 3) · ((11 · 𝐴) + 𝐵))
51 3cn 8755 . . . . . . . . 9 3 ∈ ℂ
5245, 19addcli 7734 . . . . . . . . 9 ((11 · 𝐴) + 𝐵) ∈ ℂ
5351, 51, 52mulassi 7739 . . . . . . . 8 ((3 · 3) · ((11 · 𝐴) + 𝐵)) = (3 · (3 · ((11 · 𝐴) + 𝐵)))
5450, 53eqtri 2136 . . . . . . 7 (9 · ((11 · 𝐴) + 𝐵)) = (3 · (3 · ((11 · 𝐴) + 𝐵)))
5544, 47, 543eqtri 2140 . . . . . 6 ((99 · 𝐴) + (9 · 𝐵)) = (3 · (3 · ((11 · 𝐴) + 𝐵)))
5655oveq1i 5750 . . . . 5 (((99 · 𝐴) + (9 · 𝐵)) + ((𝐴 + 𝐵) + 𝐶)) = ((3 · (3 · ((11 · 𝐴) + 𝐵))) + ((𝐴 + 𝐵) + 𝐶))
5730, 35, 563eqtri 2140 . . . 4 ((((99 · 𝐴) + 𝐴) + ((9 · 𝐵) + 𝐵)) + 𝐶) = ((3 · (3 · ((11 · 𝐴) + 𝐵))) + ((𝐴 + 𝐵) + 𝐶))
583, 25, 573eqtri 2140 . . 3 𝐴𝐵𝐶 = ((3 · (3 · ((11 · 𝐴) + 𝐵))) + ((𝐴 + 𝐵) + 𝐶))
5958breq2i 3905 . 2 (3 ∥ 𝐴𝐵𝐶 ↔ 3 ∥ ((3 · (3 · ((11 · 𝐴) + 𝐵))) + ((𝐴 + 𝐵) + 𝐶)))
60 3z 9037 . . 3 3 ∈ ℤ
611nn0zi 9030 . . . . 5 𝐴 ∈ ℤ
622nn0zi 9030 . . . . 5 𝐵 ∈ ℤ
63 zaddcl 9048 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℤ)
6461, 62, 63mp2an 420 . . . 4 (𝐴 + 𝐵) ∈ ℤ
6533nn0zi 9030 . . . 4 𝐶 ∈ ℤ
66 zaddcl 9048 . . . 4 (((𝐴 + 𝐵) ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐴 + 𝐵) + 𝐶) ∈ ℤ)
6764, 65, 66mp2an 420 . . 3 ((𝐴 + 𝐵) + 𝐶) ∈ ℤ
6840nn0zi 9030 . . . . . . . 8 11 ∈ ℤ
69 zmulcl 9061 . . . . . . . 8 ((11 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (11 · 𝐴) ∈ ℤ)
7068, 61, 69mp2an 420 . . . . . . 7 (11 · 𝐴) ∈ ℤ
71 zaddcl 9048 . . . . . . 7 (((11 · 𝐴) ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((11 · 𝐴) + 𝐵) ∈ ℤ)
7270, 62, 71mp2an 420 . . . . . 6 ((11 · 𝐴) + 𝐵) ∈ ℤ
73 zmulcl 9061 . . . . . 6 ((3 ∈ ℤ ∧ ((11 · 𝐴) + 𝐵) ∈ ℤ) → (3 · ((11 · 𝐴) + 𝐵)) ∈ ℤ)
7460, 72, 73mp2an 420 . . . . 5 (3 · ((11 · 𝐴) + 𝐵)) ∈ ℤ
75 zmulcl 9061 . . . . 5 ((3 ∈ ℤ ∧ (3 · ((11 · 𝐴) + 𝐵)) ∈ ℤ) → (3 · (3 · ((11 · 𝐴) + 𝐵))) ∈ ℤ)
7660, 74, 75mp2an 420 . . . 4 (3 · (3 · ((11 · 𝐴) + 𝐵))) ∈ ℤ
77 dvdsmul1 11422 . . . . 5 ((3 ∈ ℤ ∧ (3 · ((11 · 𝐴) + 𝐵)) ∈ ℤ) → 3 ∥ (3 · (3 · ((11 · 𝐴) + 𝐵))))
7860, 74, 77mp2an 420 . . . 4 3 ∥ (3 · (3 · ((11 · 𝐴) + 𝐵)))
7976, 78pm3.2i 268 . . 3 ((3 · (3 · ((11 · 𝐴) + 𝐵))) ∈ ℤ ∧ 3 ∥ (3 · (3 · ((11 · 𝐴) + 𝐵))))
80 dvdsadd2b 11447 . . 3 ((3 ∈ ℤ ∧ ((𝐴 + 𝐵) + 𝐶) ∈ ℤ ∧ ((3 · (3 · ((11 · 𝐴) + 𝐵))) ∈ ℤ ∧ 3 ∥ (3 · (3 · ((11 · 𝐴) + 𝐵))))) → (3 ∥ ((𝐴 + 𝐵) + 𝐶) ↔ 3 ∥ ((3 · (3 · ((11 · 𝐴) + 𝐵))) + ((𝐴 + 𝐵) + 𝐶))))
8160, 67, 79, 80mp3an 1298 . 2 (3 ∥ ((𝐴 + 𝐵) + 𝐶) ↔ 3 ∥ ((3 · (3 · ((11 · 𝐴) + 𝐵))) + ((𝐴 + 𝐵) + 𝐶)))
8259, 81bitr4i 186 1 (3 ∥ 𝐴𝐵𝐶 ↔ 3 ∥ ((𝐴 + 𝐵) + 𝐶))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104   = wceq 1314  wcel 1463   class class class wbr 3897  (class class class)co 5740  cc 7582  0cc0 7584  1c1 7585   + caddc 7587   · cmul 7589  2c2 8731  3c3 8732  9c9 8738  0cn0 8931  cz 9008  cdc 9136  cexp 10243  cdvds 11400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4011  ax-sep 4014  ax-nul 4022  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-iinf 4470  ax-cnex 7675  ax-resscn 7676  ax-1cn 7677  ax-1re 7678  ax-icn 7679  ax-addcl 7680  ax-addrcl 7681  ax-mulcl 7682  ax-mulrcl 7683  ax-addcom 7684  ax-mulcom 7685  ax-addass 7686  ax-mulass 7687  ax-distr 7688  ax-i2m1 7689  ax-0lt1 7690  ax-1rid 7691  ax-0id 7692  ax-rnegex 7693  ax-precex 7694  ax-cnre 7695  ax-pre-ltirr 7696  ax-pre-ltwlin 7697  ax-pre-lttrn 7698  ax-pre-apti 7699  ax-pre-ltadd 7700  ax-pre-mulgt0 7701  ax-pre-mulext 7702
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-nel 2379  df-ral 2396  df-rex 2397  df-reu 2398  df-rmo 2399  df-rab 2400  df-v 2660  df-sbc 2881  df-csb 2974  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-nul 3332  df-if 3443  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-int 3740  df-iun 3783  df-br 3898  df-opab 3958  df-mpt 3959  df-tr 3995  df-id 4183  df-po 4186  df-iso 4187  df-iord 4256  df-on 4258  df-ilim 4259  df-suc 4261  df-iom 4473  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fn 5094  df-f 5095  df-f1 5096  df-fo 5097  df-f1o 5098  df-fv 5099  df-riota 5696  df-ov 5743  df-oprab 5744  df-mpo 5745  df-1st 6004  df-2nd 6005  df-recs 6168  df-frec 6254  df-pnf 7766  df-mnf 7767  df-xr 7768  df-ltxr 7769  df-le 7770  df-sub 7899  df-neg 7900  df-reap 8300  df-ap 8307  df-div 8396  df-inn 8681  df-2 8739  df-3 8740  df-4 8741  df-5 8742  df-6 8743  df-7 8744  df-8 8745  df-9 8746  df-n0 8932  df-z 9009  df-dec 9137  df-uz 9279  df-seqfrec 10170  df-exp 10244  df-dvds 11401
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator