| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 8th4div3 | GIF version | ||
| Description: An eighth of four thirds is a sixth. (Contributed by Paul Chapman, 24-Nov-2007.) |
| Ref | Expression |
|---|---|
| 8th4div3 | ⊢ ((1 / 8) · (4 / 3)) = (1 / 6) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 8060 | . . . 4 ⊢ 1 ∈ ℂ | |
| 2 | 8re 9163 | . . . . 5 ⊢ 8 ∈ ℝ | |
| 3 | 2 | recni 8126 | . . . 4 ⊢ 8 ∈ ℂ |
| 4 | 4cn 9156 | . . . 4 ⊢ 4 ∈ ℂ | |
| 5 | 3cn 9153 | . . . 4 ⊢ 3 ∈ ℂ | |
| 6 | 8pos 9181 | . . . . 5 ⊢ 0 < 8 | |
| 7 | 2, 6 | gt0ap0ii 8743 | . . . 4 ⊢ 8 # 0 |
| 8 | 3re 9152 | . . . . 5 ⊢ 3 ∈ ℝ | |
| 9 | 3pos 9172 | . . . . 5 ⊢ 0 < 3 | |
| 10 | 8, 9 | gt0ap0ii 8743 | . . . 4 ⊢ 3 # 0 |
| 11 | 1, 3, 4, 5, 7, 10 | divmuldivapi 8887 | . . 3 ⊢ ((1 / 8) · (4 / 3)) = ((1 · 4) / (8 · 3)) |
| 12 | 1, 4 | mulcomi 8120 | . . . 4 ⊢ (1 · 4) = (4 · 1) |
| 13 | 2cn 9149 | . . . . . . . 8 ⊢ 2 ∈ ℂ | |
| 14 | 4, 13, 5 | mul32i 8261 | . . . . . . 7 ⊢ ((4 · 2) · 3) = ((4 · 3) · 2) |
| 15 | 4t2e8 9237 | . . . . . . . 8 ⊢ (4 · 2) = 8 | |
| 16 | 15 | oveq1i 5984 | . . . . . . 7 ⊢ ((4 · 2) · 3) = (8 · 3) |
| 17 | 14, 16 | eqtr3i 2232 | . . . . . 6 ⊢ ((4 · 3) · 2) = (8 · 3) |
| 18 | 4, 5, 13 | mulassi 8123 | . . . . . 6 ⊢ ((4 · 3) · 2) = (4 · (3 · 2)) |
| 19 | 17, 18 | eqtr3i 2232 | . . . . 5 ⊢ (8 · 3) = (4 · (3 · 2)) |
| 20 | 3t2e6 9235 | . . . . . 6 ⊢ (3 · 2) = 6 | |
| 21 | 20 | oveq2i 5985 | . . . . 5 ⊢ (4 · (3 · 2)) = (4 · 6) |
| 22 | 19, 21 | eqtri 2230 | . . . 4 ⊢ (8 · 3) = (4 · 6) |
| 23 | 12, 22 | oveq12i 5986 | . . 3 ⊢ ((1 · 4) / (8 · 3)) = ((4 · 1) / (4 · 6)) |
| 24 | 11, 23 | eqtri 2230 | . 2 ⊢ ((1 / 8) · (4 / 3)) = ((4 · 1) / (4 · 6)) |
| 25 | 6re 9159 | . . . 4 ⊢ 6 ∈ ℝ | |
| 26 | 25 | recni 8126 | . . 3 ⊢ 6 ∈ ℂ |
| 27 | 6pos 9179 | . . . 4 ⊢ 0 < 6 | |
| 28 | 25, 27 | gt0ap0ii 8743 | . . 3 ⊢ 6 # 0 |
| 29 | 4re 9155 | . . . 4 ⊢ 4 ∈ ℝ | |
| 30 | 4pos 9175 | . . . 4 ⊢ 0 < 4 | |
| 31 | 29, 30 | gt0ap0ii 8743 | . . 3 ⊢ 4 # 0 |
| 32 | divcanap5 8829 | . . . 4 ⊢ ((1 ∈ ℂ ∧ (6 ∈ ℂ ∧ 6 # 0) ∧ (4 ∈ ℂ ∧ 4 # 0)) → ((4 · 1) / (4 · 6)) = (1 / 6)) | |
| 33 | 1, 32 | mp3an1 1339 | . . 3 ⊢ (((6 ∈ ℂ ∧ 6 # 0) ∧ (4 ∈ ℂ ∧ 4 # 0)) → ((4 · 1) / (4 · 6)) = (1 / 6)) |
| 34 | 26, 28, 4, 31, 33 | mp4an 427 | . 2 ⊢ ((4 · 1) / (4 · 6)) = (1 / 6) |
| 35 | 24, 34 | eqtri 2230 | 1 ⊢ ((1 / 8) · (4 / 3)) = (1 / 6) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1375 ∈ wcel 2180 class class class wbr 4062 (class class class)co 5974 ℂcc 7965 0cc0 7967 1c1 7968 · cmul 7972 # cap 8696 / cdiv 8787 2c2 9129 3c3 9130 4c4 9131 6c6 9133 8c8 9135 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-mulrcl 8066 ax-addcom 8067 ax-mulcom 8068 ax-addass 8069 ax-mulass 8070 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-1rid 8074 ax-0id 8075 ax-rnegex 8076 ax-precex 8077 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-apti 8082 ax-pre-ltadd 8083 ax-pre-mulgt0 8084 ax-pre-mulext 8085 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rmo 2496 df-rab 2497 df-v 2781 df-sbc 3009 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-br 4063 df-opab 4125 df-id 4361 df-po 4364 df-iso 4365 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-iota 5254 df-fun 5296 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-reap 8690 df-ap 8697 df-div 8788 df-2 9137 df-3 9138 df-4 9139 df-5 9140 df-6 9141 df-7 9142 df-8 9143 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |