| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 8th4div3 | GIF version | ||
| Description: An eighth of four thirds is a sixth. (Contributed by Paul Chapman, 24-Nov-2007.) |
| Ref | Expression |
|---|---|
| 8th4div3 | ⊢ ((1 / 8) · (4 / 3)) = (1 / 6) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 8100 | . . . 4 ⊢ 1 ∈ ℂ | |
| 2 | 8re 9203 | . . . . 5 ⊢ 8 ∈ ℝ | |
| 3 | 2 | recni 8166 | . . . 4 ⊢ 8 ∈ ℂ |
| 4 | 4cn 9196 | . . . 4 ⊢ 4 ∈ ℂ | |
| 5 | 3cn 9193 | . . . 4 ⊢ 3 ∈ ℂ | |
| 6 | 8pos 9221 | . . . . 5 ⊢ 0 < 8 | |
| 7 | 2, 6 | gt0ap0ii 8783 | . . . 4 ⊢ 8 # 0 |
| 8 | 3re 9192 | . . . . 5 ⊢ 3 ∈ ℝ | |
| 9 | 3pos 9212 | . . . . 5 ⊢ 0 < 3 | |
| 10 | 8, 9 | gt0ap0ii 8783 | . . . 4 ⊢ 3 # 0 |
| 11 | 1, 3, 4, 5, 7, 10 | divmuldivapi 8927 | . . 3 ⊢ ((1 / 8) · (4 / 3)) = ((1 · 4) / (8 · 3)) |
| 12 | 1, 4 | mulcomi 8160 | . . . 4 ⊢ (1 · 4) = (4 · 1) |
| 13 | 2cn 9189 | . . . . . . . 8 ⊢ 2 ∈ ℂ | |
| 14 | 4, 13, 5 | mul32i 8301 | . . . . . . 7 ⊢ ((4 · 2) · 3) = ((4 · 3) · 2) |
| 15 | 4t2e8 9277 | . . . . . . . 8 ⊢ (4 · 2) = 8 | |
| 16 | 15 | oveq1i 6017 | . . . . . . 7 ⊢ ((4 · 2) · 3) = (8 · 3) |
| 17 | 14, 16 | eqtr3i 2252 | . . . . . 6 ⊢ ((4 · 3) · 2) = (8 · 3) |
| 18 | 4, 5, 13 | mulassi 8163 | . . . . . 6 ⊢ ((4 · 3) · 2) = (4 · (3 · 2)) |
| 19 | 17, 18 | eqtr3i 2252 | . . . . 5 ⊢ (8 · 3) = (4 · (3 · 2)) |
| 20 | 3t2e6 9275 | . . . . . 6 ⊢ (3 · 2) = 6 | |
| 21 | 20 | oveq2i 6018 | . . . . 5 ⊢ (4 · (3 · 2)) = (4 · 6) |
| 22 | 19, 21 | eqtri 2250 | . . . 4 ⊢ (8 · 3) = (4 · 6) |
| 23 | 12, 22 | oveq12i 6019 | . . 3 ⊢ ((1 · 4) / (8 · 3)) = ((4 · 1) / (4 · 6)) |
| 24 | 11, 23 | eqtri 2250 | . 2 ⊢ ((1 / 8) · (4 / 3)) = ((4 · 1) / (4 · 6)) |
| 25 | 6re 9199 | . . . 4 ⊢ 6 ∈ ℝ | |
| 26 | 25 | recni 8166 | . . 3 ⊢ 6 ∈ ℂ |
| 27 | 6pos 9219 | . . . 4 ⊢ 0 < 6 | |
| 28 | 25, 27 | gt0ap0ii 8783 | . . 3 ⊢ 6 # 0 |
| 29 | 4re 9195 | . . . 4 ⊢ 4 ∈ ℝ | |
| 30 | 4pos 9215 | . . . 4 ⊢ 0 < 4 | |
| 31 | 29, 30 | gt0ap0ii 8783 | . . 3 ⊢ 4 # 0 |
| 32 | divcanap5 8869 | . . . 4 ⊢ ((1 ∈ ℂ ∧ (6 ∈ ℂ ∧ 6 # 0) ∧ (4 ∈ ℂ ∧ 4 # 0)) → ((4 · 1) / (4 · 6)) = (1 / 6)) | |
| 33 | 1, 32 | mp3an1 1358 | . . 3 ⊢ (((6 ∈ ℂ ∧ 6 # 0) ∧ (4 ∈ ℂ ∧ 4 # 0)) → ((4 · 1) / (4 · 6)) = (1 / 6)) |
| 34 | 26, 28, 4, 31, 33 | mp4an 427 | . 2 ⊢ ((4 · 1) / (4 · 6)) = (1 / 6) |
| 35 | 24, 34 | eqtri 2250 | 1 ⊢ ((1 / 8) · (4 / 3)) = (1 / 6) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1395 ∈ wcel 2200 class class class wbr 4083 (class class class)co 6007 ℂcc 8005 0cc0 8007 1c1 8008 · cmul 8012 # cap 8736 / cdiv 8827 2c2 9169 3c3 9170 4c4 9171 6c6 9173 8c8 9175 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-mulrcl 8106 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-precex 8117 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 ax-pre-mulgt0 8124 ax-pre-mulext 8125 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-id 4384 df-po 4387 df-iso 4388 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-reap 8730 df-ap 8737 df-div 8828 df-2 9177 df-3 9178 df-4 9179 df-5 9180 df-6 9181 df-7 9182 df-8 9183 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |