| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 8th4div3 | GIF version | ||
| Description: An eighth of four thirds is a sixth. (Contributed by Paul Chapman, 24-Nov-2007.) |
| Ref | Expression |
|---|---|
| 8th4div3 | ⊢ ((1 / 8) · (4 / 3)) = (1 / 6) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 7989 | . . . 4 ⊢ 1 ∈ ℂ | |
| 2 | 8re 9092 | . . . . 5 ⊢ 8 ∈ ℝ | |
| 3 | 2 | recni 8055 | . . . 4 ⊢ 8 ∈ ℂ |
| 4 | 4cn 9085 | . . . 4 ⊢ 4 ∈ ℂ | |
| 5 | 3cn 9082 | . . . 4 ⊢ 3 ∈ ℂ | |
| 6 | 8pos 9110 | . . . . 5 ⊢ 0 < 8 | |
| 7 | 2, 6 | gt0ap0ii 8672 | . . . 4 ⊢ 8 # 0 |
| 8 | 3re 9081 | . . . . 5 ⊢ 3 ∈ ℝ | |
| 9 | 3pos 9101 | . . . . 5 ⊢ 0 < 3 | |
| 10 | 8, 9 | gt0ap0ii 8672 | . . . 4 ⊢ 3 # 0 |
| 11 | 1, 3, 4, 5, 7, 10 | divmuldivapi 8816 | . . 3 ⊢ ((1 / 8) · (4 / 3)) = ((1 · 4) / (8 · 3)) |
| 12 | 1, 4 | mulcomi 8049 | . . . 4 ⊢ (1 · 4) = (4 · 1) |
| 13 | 2cn 9078 | . . . . . . . 8 ⊢ 2 ∈ ℂ | |
| 14 | 4, 13, 5 | mul32i 8190 | . . . . . . 7 ⊢ ((4 · 2) · 3) = ((4 · 3) · 2) |
| 15 | 4t2e8 9166 | . . . . . . . 8 ⊢ (4 · 2) = 8 | |
| 16 | 15 | oveq1i 5935 | . . . . . . 7 ⊢ ((4 · 2) · 3) = (8 · 3) |
| 17 | 14, 16 | eqtr3i 2219 | . . . . . 6 ⊢ ((4 · 3) · 2) = (8 · 3) |
| 18 | 4, 5, 13 | mulassi 8052 | . . . . . 6 ⊢ ((4 · 3) · 2) = (4 · (3 · 2)) |
| 19 | 17, 18 | eqtr3i 2219 | . . . . 5 ⊢ (8 · 3) = (4 · (3 · 2)) |
| 20 | 3t2e6 9164 | . . . . . 6 ⊢ (3 · 2) = 6 | |
| 21 | 20 | oveq2i 5936 | . . . . 5 ⊢ (4 · (3 · 2)) = (4 · 6) |
| 22 | 19, 21 | eqtri 2217 | . . . 4 ⊢ (8 · 3) = (4 · 6) |
| 23 | 12, 22 | oveq12i 5937 | . . 3 ⊢ ((1 · 4) / (8 · 3)) = ((4 · 1) / (4 · 6)) |
| 24 | 11, 23 | eqtri 2217 | . 2 ⊢ ((1 / 8) · (4 / 3)) = ((4 · 1) / (4 · 6)) |
| 25 | 6re 9088 | . . . 4 ⊢ 6 ∈ ℝ | |
| 26 | 25 | recni 8055 | . . 3 ⊢ 6 ∈ ℂ |
| 27 | 6pos 9108 | . . . 4 ⊢ 0 < 6 | |
| 28 | 25, 27 | gt0ap0ii 8672 | . . 3 ⊢ 6 # 0 |
| 29 | 4re 9084 | . . . 4 ⊢ 4 ∈ ℝ | |
| 30 | 4pos 9104 | . . . 4 ⊢ 0 < 4 | |
| 31 | 29, 30 | gt0ap0ii 8672 | . . 3 ⊢ 4 # 0 |
| 32 | divcanap5 8758 | . . . 4 ⊢ ((1 ∈ ℂ ∧ (6 ∈ ℂ ∧ 6 # 0) ∧ (4 ∈ ℂ ∧ 4 # 0)) → ((4 · 1) / (4 · 6)) = (1 / 6)) | |
| 33 | 1, 32 | mp3an1 1335 | . . 3 ⊢ (((6 ∈ ℂ ∧ 6 # 0) ∧ (4 ∈ ℂ ∧ 4 # 0)) → ((4 · 1) / (4 · 6)) = (1 / 6)) |
| 34 | 26, 28, 4, 31, 33 | mp4an 427 | . 2 ⊢ ((4 · 1) / (4 · 6)) = (1 / 6) |
| 35 | 24, 34 | eqtri 2217 | 1 ⊢ ((1 / 8) · (4 / 3)) = (1 / 6) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1364 ∈ wcel 2167 class class class wbr 4034 (class class class)co 5925 ℂcc 7894 0cc0 7896 1c1 7897 · cmul 7901 # cap 8625 / cdiv 8716 2c2 9058 3c3 9059 4c4 9060 6c6 9062 8c8 9064 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-pre-mulext 8014 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-po 4332 df-iso 4333 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 df-div 8717 df-2 9066 df-3 9067 df-4 9068 df-5 9069 df-6 9070 df-7 9071 df-8 9072 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |