Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 8th4div3 | GIF version |
Description: An eighth of four thirds is a sixth. (Contributed by Paul Chapman, 24-Nov-2007.) |
Ref | Expression |
---|---|
8th4div3 | ⊢ ((1 / 8) · (4 / 3)) = (1 / 6) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 7842 | . . . 4 ⊢ 1 ∈ ℂ | |
2 | 8re 8938 | . . . . 5 ⊢ 8 ∈ ℝ | |
3 | 2 | recni 7907 | . . . 4 ⊢ 8 ∈ ℂ |
4 | 4cn 8931 | . . . 4 ⊢ 4 ∈ ℂ | |
5 | 3cn 8928 | . . . 4 ⊢ 3 ∈ ℂ | |
6 | 8pos 8956 | . . . . 5 ⊢ 0 < 8 | |
7 | 2, 6 | gt0ap0ii 8522 | . . . 4 ⊢ 8 # 0 |
8 | 3re 8927 | . . . . 5 ⊢ 3 ∈ ℝ | |
9 | 3pos 8947 | . . . . 5 ⊢ 0 < 3 | |
10 | 8, 9 | gt0ap0ii 8522 | . . . 4 ⊢ 3 # 0 |
11 | 1, 3, 4, 5, 7, 10 | divmuldivapi 8664 | . . 3 ⊢ ((1 / 8) · (4 / 3)) = ((1 · 4) / (8 · 3)) |
12 | 1, 4 | mulcomi 7901 | . . . 4 ⊢ (1 · 4) = (4 · 1) |
13 | 2cn 8924 | . . . . . . . 8 ⊢ 2 ∈ ℂ | |
14 | 4, 13, 5 | mul32i 8041 | . . . . . . 7 ⊢ ((4 · 2) · 3) = ((4 · 3) · 2) |
15 | 4t2e8 9011 | . . . . . . . 8 ⊢ (4 · 2) = 8 | |
16 | 15 | oveq1i 5851 | . . . . . . 7 ⊢ ((4 · 2) · 3) = (8 · 3) |
17 | 14, 16 | eqtr3i 2188 | . . . . . 6 ⊢ ((4 · 3) · 2) = (8 · 3) |
18 | 4, 5, 13 | mulassi 7904 | . . . . . 6 ⊢ ((4 · 3) · 2) = (4 · (3 · 2)) |
19 | 17, 18 | eqtr3i 2188 | . . . . 5 ⊢ (8 · 3) = (4 · (3 · 2)) |
20 | 3t2e6 9009 | . . . . . 6 ⊢ (3 · 2) = 6 | |
21 | 20 | oveq2i 5852 | . . . . 5 ⊢ (4 · (3 · 2)) = (4 · 6) |
22 | 19, 21 | eqtri 2186 | . . . 4 ⊢ (8 · 3) = (4 · 6) |
23 | 12, 22 | oveq12i 5853 | . . 3 ⊢ ((1 · 4) / (8 · 3)) = ((4 · 1) / (4 · 6)) |
24 | 11, 23 | eqtri 2186 | . 2 ⊢ ((1 / 8) · (4 / 3)) = ((4 · 1) / (4 · 6)) |
25 | 6re 8934 | . . . 4 ⊢ 6 ∈ ℝ | |
26 | 25 | recni 7907 | . . 3 ⊢ 6 ∈ ℂ |
27 | 6pos 8954 | . . . 4 ⊢ 0 < 6 | |
28 | 25, 27 | gt0ap0ii 8522 | . . 3 ⊢ 6 # 0 |
29 | 4re 8930 | . . . 4 ⊢ 4 ∈ ℝ | |
30 | 4pos 8950 | . . . 4 ⊢ 0 < 4 | |
31 | 29, 30 | gt0ap0ii 8522 | . . 3 ⊢ 4 # 0 |
32 | divcanap5 8606 | . . . 4 ⊢ ((1 ∈ ℂ ∧ (6 ∈ ℂ ∧ 6 # 0) ∧ (4 ∈ ℂ ∧ 4 # 0)) → ((4 · 1) / (4 · 6)) = (1 / 6)) | |
33 | 1, 32 | mp3an1 1314 | . . 3 ⊢ (((6 ∈ ℂ ∧ 6 # 0) ∧ (4 ∈ ℂ ∧ 4 # 0)) → ((4 · 1) / (4 · 6)) = (1 / 6)) |
34 | 26, 28, 4, 31, 33 | mp4an 424 | . 2 ⊢ ((4 · 1) / (4 · 6)) = (1 / 6) |
35 | 24, 34 | eqtri 2186 | 1 ⊢ ((1 / 8) · (4 / 3)) = (1 / 6) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 = wceq 1343 ∈ wcel 2136 class class class wbr 3981 (class class class)co 5841 ℂcc 7747 0cc0 7749 1c1 7750 · cmul 7754 # cap 8475 / cdiv 8564 2c2 8904 3c3 8905 4c4 8906 6c6 8908 8c8 8910 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-pow 4152 ax-pr 4186 ax-un 4410 ax-setind 4513 ax-cnex 7840 ax-resscn 7841 ax-1cn 7842 ax-1re 7843 ax-icn 7844 ax-addcl 7845 ax-addrcl 7846 ax-mulcl 7847 ax-mulrcl 7848 ax-addcom 7849 ax-mulcom 7850 ax-addass 7851 ax-mulass 7852 ax-distr 7853 ax-i2m1 7854 ax-0lt1 7855 ax-1rid 7856 ax-0id 7857 ax-rnegex 7858 ax-precex 7859 ax-cnre 7860 ax-pre-ltirr 7861 ax-pre-ltwlin 7862 ax-pre-lttrn 7863 ax-pre-apti 7864 ax-pre-ltadd 7865 ax-pre-mulgt0 7866 ax-pre-mulext 7867 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-nel 2431 df-ral 2448 df-rex 2449 df-reu 2450 df-rmo 2451 df-rab 2452 df-v 2727 df-sbc 2951 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-br 3982 df-opab 4043 df-id 4270 df-po 4273 df-iso 4274 df-xp 4609 df-rel 4610 df-cnv 4611 df-co 4612 df-dm 4613 df-iota 5152 df-fun 5189 df-fv 5195 df-riota 5797 df-ov 5844 df-oprab 5845 df-mpo 5846 df-pnf 7931 df-mnf 7932 df-xr 7933 df-ltxr 7934 df-le 7935 df-sub 8067 df-neg 8068 df-reap 8469 df-ap 8476 df-div 8565 df-2 8912 df-3 8913 df-4 8914 df-5 8915 df-6 8916 df-7 8917 df-8 8918 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |