| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 8th4div3 | GIF version | ||
| Description: An eighth of four thirds is a sixth. (Contributed by Paul Chapman, 24-Nov-2007.) |
| Ref | Expression |
|---|---|
| 8th4div3 | ⊢ ((1 / 8) · (4 / 3)) = (1 / 6) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 8025 | . . . 4 ⊢ 1 ∈ ℂ | |
| 2 | 8re 9128 | . . . . 5 ⊢ 8 ∈ ℝ | |
| 3 | 2 | recni 8091 | . . . 4 ⊢ 8 ∈ ℂ |
| 4 | 4cn 9121 | . . . 4 ⊢ 4 ∈ ℂ | |
| 5 | 3cn 9118 | . . . 4 ⊢ 3 ∈ ℂ | |
| 6 | 8pos 9146 | . . . . 5 ⊢ 0 < 8 | |
| 7 | 2, 6 | gt0ap0ii 8708 | . . . 4 ⊢ 8 # 0 |
| 8 | 3re 9117 | . . . . 5 ⊢ 3 ∈ ℝ | |
| 9 | 3pos 9137 | . . . . 5 ⊢ 0 < 3 | |
| 10 | 8, 9 | gt0ap0ii 8708 | . . . 4 ⊢ 3 # 0 |
| 11 | 1, 3, 4, 5, 7, 10 | divmuldivapi 8852 | . . 3 ⊢ ((1 / 8) · (4 / 3)) = ((1 · 4) / (8 · 3)) |
| 12 | 1, 4 | mulcomi 8085 | . . . 4 ⊢ (1 · 4) = (4 · 1) |
| 13 | 2cn 9114 | . . . . . . . 8 ⊢ 2 ∈ ℂ | |
| 14 | 4, 13, 5 | mul32i 8226 | . . . . . . 7 ⊢ ((4 · 2) · 3) = ((4 · 3) · 2) |
| 15 | 4t2e8 9202 | . . . . . . . 8 ⊢ (4 · 2) = 8 | |
| 16 | 15 | oveq1i 5961 | . . . . . . 7 ⊢ ((4 · 2) · 3) = (8 · 3) |
| 17 | 14, 16 | eqtr3i 2229 | . . . . . 6 ⊢ ((4 · 3) · 2) = (8 · 3) |
| 18 | 4, 5, 13 | mulassi 8088 | . . . . . 6 ⊢ ((4 · 3) · 2) = (4 · (3 · 2)) |
| 19 | 17, 18 | eqtr3i 2229 | . . . . 5 ⊢ (8 · 3) = (4 · (3 · 2)) |
| 20 | 3t2e6 9200 | . . . . . 6 ⊢ (3 · 2) = 6 | |
| 21 | 20 | oveq2i 5962 | . . . . 5 ⊢ (4 · (3 · 2)) = (4 · 6) |
| 22 | 19, 21 | eqtri 2227 | . . . 4 ⊢ (8 · 3) = (4 · 6) |
| 23 | 12, 22 | oveq12i 5963 | . . 3 ⊢ ((1 · 4) / (8 · 3)) = ((4 · 1) / (4 · 6)) |
| 24 | 11, 23 | eqtri 2227 | . 2 ⊢ ((1 / 8) · (4 / 3)) = ((4 · 1) / (4 · 6)) |
| 25 | 6re 9124 | . . . 4 ⊢ 6 ∈ ℝ | |
| 26 | 25 | recni 8091 | . . 3 ⊢ 6 ∈ ℂ |
| 27 | 6pos 9144 | . . . 4 ⊢ 0 < 6 | |
| 28 | 25, 27 | gt0ap0ii 8708 | . . 3 ⊢ 6 # 0 |
| 29 | 4re 9120 | . . . 4 ⊢ 4 ∈ ℝ | |
| 30 | 4pos 9140 | . . . 4 ⊢ 0 < 4 | |
| 31 | 29, 30 | gt0ap0ii 8708 | . . 3 ⊢ 4 # 0 |
| 32 | divcanap5 8794 | . . . 4 ⊢ ((1 ∈ ℂ ∧ (6 ∈ ℂ ∧ 6 # 0) ∧ (4 ∈ ℂ ∧ 4 # 0)) → ((4 · 1) / (4 · 6)) = (1 / 6)) | |
| 33 | 1, 32 | mp3an1 1337 | . . 3 ⊢ (((6 ∈ ℂ ∧ 6 # 0) ∧ (4 ∈ ℂ ∧ 4 # 0)) → ((4 · 1) / (4 · 6)) = (1 / 6)) |
| 34 | 26, 28, 4, 31, 33 | mp4an 427 | . 2 ⊢ ((4 · 1) / (4 · 6)) = (1 / 6) |
| 35 | 24, 34 | eqtri 2227 | 1 ⊢ ((1 / 8) · (4 / 3)) = (1 / 6) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1373 ∈ wcel 2177 class class class wbr 4047 (class class class)co 5951 ℂcc 7930 0cc0 7932 1c1 7933 · cmul 7937 # cap 8661 / cdiv 8752 2c2 9094 3c3 9095 4c4 9096 6c6 9098 8c8 9100 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-mulrcl 8031 ax-addcom 8032 ax-mulcom 8033 ax-addass 8034 ax-mulass 8035 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-1rid 8039 ax-0id 8040 ax-rnegex 8041 ax-precex 8042 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-apti 8047 ax-pre-ltadd 8048 ax-pre-mulgt0 8049 ax-pre-mulext 8050 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-br 4048 df-opab 4110 df-id 4344 df-po 4347 df-iso 4348 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-iota 5237 df-fun 5278 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-reap 8655 df-ap 8662 df-div 8753 df-2 9102 df-3 9103 df-4 9104 df-5 9105 df-6 9106 df-7 9107 df-8 9108 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |