![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 8th4div3 | GIF version |
Description: An eighth of four thirds is a sixth. (Contributed by Paul Chapman, 24-Nov-2007.) |
Ref | Expression |
---|---|
8th4div3 | ⊢ ((1 / 8) · (4 / 3)) = (1 / 6) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 7939 | . . . 4 ⊢ 1 ∈ ℂ | |
2 | 8re 9039 | . . . . 5 ⊢ 8 ∈ ℝ | |
3 | 2 | recni 8004 | . . . 4 ⊢ 8 ∈ ℂ |
4 | 4cn 9032 | . . . 4 ⊢ 4 ∈ ℂ | |
5 | 3cn 9029 | . . . 4 ⊢ 3 ∈ ℂ | |
6 | 8pos 9057 | . . . . 5 ⊢ 0 < 8 | |
7 | 2, 6 | gt0ap0ii 8620 | . . . 4 ⊢ 8 # 0 |
8 | 3re 9028 | . . . . 5 ⊢ 3 ∈ ℝ | |
9 | 3pos 9048 | . . . . 5 ⊢ 0 < 3 | |
10 | 8, 9 | gt0ap0ii 8620 | . . . 4 ⊢ 3 # 0 |
11 | 1, 3, 4, 5, 7, 10 | divmuldivapi 8764 | . . 3 ⊢ ((1 / 8) · (4 / 3)) = ((1 · 4) / (8 · 3)) |
12 | 1, 4 | mulcomi 7998 | . . . 4 ⊢ (1 · 4) = (4 · 1) |
13 | 2cn 9025 | . . . . . . . 8 ⊢ 2 ∈ ℂ | |
14 | 4, 13, 5 | mul32i 8139 | . . . . . . 7 ⊢ ((4 · 2) · 3) = ((4 · 3) · 2) |
15 | 4t2e8 9112 | . . . . . . . 8 ⊢ (4 · 2) = 8 | |
16 | 15 | oveq1i 5910 | . . . . . . 7 ⊢ ((4 · 2) · 3) = (8 · 3) |
17 | 14, 16 | eqtr3i 2212 | . . . . . 6 ⊢ ((4 · 3) · 2) = (8 · 3) |
18 | 4, 5, 13 | mulassi 8001 | . . . . . 6 ⊢ ((4 · 3) · 2) = (4 · (3 · 2)) |
19 | 17, 18 | eqtr3i 2212 | . . . . 5 ⊢ (8 · 3) = (4 · (3 · 2)) |
20 | 3t2e6 9110 | . . . . . 6 ⊢ (3 · 2) = 6 | |
21 | 20 | oveq2i 5911 | . . . . 5 ⊢ (4 · (3 · 2)) = (4 · 6) |
22 | 19, 21 | eqtri 2210 | . . . 4 ⊢ (8 · 3) = (4 · 6) |
23 | 12, 22 | oveq12i 5912 | . . 3 ⊢ ((1 · 4) / (8 · 3)) = ((4 · 1) / (4 · 6)) |
24 | 11, 23 | eqtri 2210 | . 2 ⊢ ((1 / 8) · (4 / 3)) = ((4 · 1) / (4 · 6)) |
25 | 6re 9035 | . . . 4 ⊢ 6 ∈ ℝ | |
26 | 25 | recni 8004 | . . 3 ⊢ 6 ∈ ℂ |
27 | 6pos 9055 | . . . 4 ⊢ 0 < 6 | |
28 | 25, 27 | gt0ap0ii 8620 | . . 3 ⊢ 6 # 0 |
29 | 4re 9031 | . . . 4 ⊢ 4 ∈ ℝ | |
30 | 4pos 9051 | . . . 4 ⊢ 0 < 4 | |
31 | 29, 30 | gt0ap0ii 8620 | . . 3 ⊢ 4 # 0 |
32 | divcanap5 8706 | . . . 4 ⊢ ((1 ∈ ℂ ∧ (6 ∈ ℂ ∧ 6 # 0) ∧ (4 ∈ ℂ ∧ 4 # 0)) → ((4 · 1) / (4 · 6)) = (1 / 6)) | |
33 | 1, 32 | mp3an1 1335 | . . 3 ⊢ (((6 ∈ ℂ ∧ 6 # 0) ∧ (4 ∈ ℂ ∧ 4 # 0)) → ((4 · 1) / (4 · 6)) = (1 / 6)) |
34 | 26, 28, 4, 31, 33 | mp4an 427 | . 2 ⊢ ((4 · 1) / (4 · 6)) = (1 / 6) |
35 | 24, 34 | eqtri 2210 | 1 ⊢ ((1 / 8) · (4 / 3)) = (1 / 6) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1364 ∈ wcel 2160 class class class wbr 4021 (class class class)co 5900 ℂcc 7844 0cc0 7846 1c1 7847 · cmul 7851 # cap 8573 / cdiv 8664 2c2 9005 3c3 9006 4c4 9007 6c6 9009 8c8 9011 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4139 ax-pow 4195 ax-pr 4230 ax-un 4454 ax-setind 4557 ax-cnex 7937 ax-resscn 7938 ax-1cn 7939 ax-1re 7940 ax-icn 7941 ax-addcl 7942 ax-addrcl 7943 ax-mulcl 7944 ax-mulrcl 7945 ax-addcom 7946 ax-mulcom 7947 ax-addass 7948 ax-mulass 7949 ax-distr 7950 ax-i2m1 7951 ax-0lt1 7952 ax-1rid 7953 ax-0id 7954 ax-rnegex 7955 ax-precex 7956 ax-cnre 7957 ax-pre-ltirr 7958 ax-pre-ltwlin 7959 ax-pre-lttrn 7960 ax-pre-apti 7961 ax-pre-ltadd 7962 ax-pre-mulgt0 7963 ax-pre-mulext 7964 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-pw 3595 df-sn 3616 df-pr 3617 df-op 3619 df-uni 3828 df-br 4022 df-opab 4083 df-id 4314 df-po 4317 df-iso 4318 df-xp 4653 df-rel 4654 df-cnv 4655 df-co 4656 df-dm 4657 df-iota 5199 df-fun 5240 df-fv 5246 df-riota 5855 df-ov 5903 df-oprab 5904 df-mpo 5905 df-pnf 8029 df-mnf 8030 df-xr 8031 df-ltxr 8032 df-le 8033 df-sub 8165 df-neg 8166 df-reap 8567 df-ap 8574 df-div 8665 df-2 9013 df-3 9014 df-4 9015 df-5 9016 df-6 9017 df-7 9018 df-8 9019 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |