Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 8th4div3 | GIF version |
Description: An eighth of four thirds is a sixth. (Contributed by Paul Chapman, 24-Nov-2007.) |
Ref | Expression |
---|---|
8th4div3 | ⊢ ((1 / 8) · (4 / 3)) = (1 / 6) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 7854 | . . . 4 ⊢ 1 ∈ ℂ | |
2 | 8re 8950 | . . . . 5 ⊢ 8 ∈ ℝ | |
3 | 2 | recni 7919 | . . . 4 ⊢ 8 ∈ ℂ |
4 | 4cn 8943 | . . . 4 ⊢ 4 ∈ ℂ | |
5 | 3cn 8940 | . . . 4 ⊢ 3 ∈ ℂ | |
6 | 8pos 8968 | . . . . 5 ⊢ 0 < 8 | |
7 | 2, 6 | gt0ap0ii 8534 | . . . 4 ⊢ 8 # 0 |
8 | 3re 8939 | . . . . 5 ⊢ 3 ∈ ℝ | |
9 | 3pos 8959 | . . . . 5 ⊢ 0 < 3 | |
10 | 8, 9 | gt0ap0ii 8534 | . . . 4 ⊢ 3 # 0 |
11 | 1, 3, 4, 5, 7, 10 | divmuldivapi 8676 | . . 3 ⊢ ((1 / 8) · (4 / 3)) = ((1 · 4) / (8 · 3)) |
12 | 1, 4 | mulcomi 7913 | . . . 4 ⊢ (1 · 4) = (4 · 1) |
13 | 2cn 8936 | . . . . . . . 8 ⊢ 2 ∈ ℂ | |
14 | 4, 13, 5 | mul32i 8053 | . . . . . . 7 ⊢ ((4 · 2) · 3) = ((4 · 3) · 2) |
15 | 4t2e8 9023 | . . . . . . . 8 ⊢ (4 · 2) = 8 | |
16 | 15 | oveq1i 5860 | . . . . . . 7 ⊢ ((4 · 2) · 3) = (8 · 3) |
17 | 14, 16 | eqtr3i 2193 | . . . . . 6 ⊢ ((4 · 3) · 2) = (8 · 3) |
18 | 4, 5, 13 | mulassi 7916 | . . . . . 6 ⊢ ((4 · 3) · 2) = (4 · (3 · 2)) |
19 | 17, 18 | eqtr3i 2193 | . . . . 5 ⊢ (8 · 3) = (4 · (3 · 2)) |
20 | 3t2e6 9021 | . . . . . 6 ⊢ (3 · 2) = 6 | |
21 | 20 | oveq2i 5861 | . . . . 5 ⊢ (4 · (3 · 2)) = (4 · 6) |
22 | 19, 21 | eqtri 2191 | . . . 4 ⊢ (8 · 3) = (4 · 6) |
23 | 12, 22 | oveq12i 5862 | . . 3 ⊢ ((1 · 4) / (8 · 3)) = ((4 · 1) / (4 · 6)) |
24 | 11, 23 | eqtri 2191 | . 2 ⊢ ((1 / 8) · (4 / 3)) = ((4 · 1) / (4 · 6)) |
25 | 6re 8946 | . . . 4 ⊢ 6 ∈ ℝ | |
26 | 25 | recni 7919 | . . 3 ⊢ 6 ∈ ℂ |
27 | 6pos 8966 | . . . 4 ⊢ 0 < 6 | |
28 | 25, 27 | gt0ap0ii 8534 | . . 3 ⊢ 6 # 0 |
29 | 4re 8942 | . . . 4 ⊢ 4 ∈ ℝ | |
30 | 4pos 8962 | . . . 4 ⊢ 0 < 4 | |
31 | 29, 30 | gt0ap0ii 8534 | . . 3 ⊢ 4 # 0 |
32 | divcanap5 8618 | . . . 4 ⊢ ((1 ∈ ℂ ∧ (6 ∈ ℂ ∧ 6 # 0) ∧ (4 ∈ ℂ ∧ 4 # 0)) → ((4 · 1) / (4 · 6)) = (1 / 6)) | |
33 | 1, 32 | mp3an1 1319 | . . 3 ⊢ (((6 ∈ ℂ ∧ 6 # 0) ∧ (4 ∈ ℂ ∧ 4 # 0)) → ((4 · 1) / (4 · 6)) = (1 / 6)) |
34 | 26, 28, 4, 31, 33 | mp4an 425 | . 2 ⊢ ((4 · 1) / (4 · 6)) = (1 / 6) |
35 | 24, 34 | eqtri 2191 | 1 ⊢ ((1 / 8) · (4 / 3)) = (1 / 6) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 = wceq 1348 ∈ wcel 2141 class class class wbr 3987 (class class class)co 5850 ℂcc 7759 0cc0 7761 1c1 7762 · cmul 7766 # cap 8487 / cdiv 8576 2c2 8916 3c3 8917 4c4 8918 6c6 8920 8c8 8922 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-cnex 7852 ax-resscn 7853 ax-1cn 7854 ax-1re 7855 ax-icn 7856 ax-addcl 7857 ax-addrcl 7858 ax-mulcl 7859 ax-mulrcl 7860 ax-addcom 7861 ax-mulcom 7862 ax-addass 7863 ax-mulass 7864 ax-distr 7865 ax-i2m1 7866 ax-0lt1 7867 ax-1rid 7868 ax-0id 7869 ax-rnegex 7870 ax-precex 7871 ax-cnre 7872 ax-pre-ltirr 7873 ax-pre-ltwlin 7874 ax-pre-lttrn 7875 ax-pre-apti 7876 ax-pre-ltadd 7877 ax-pre-mulgt0 7878 ax-pre-mulext 7879 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-br 3988 df-opab 4049 df-id 4276 df-po 4279 df-iso 4280 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-iota 5158 df-fun 5198 df-fv 5204 df-riota 5806 df-ov 5853 df-oprab 5854 df-mpo 5855 df-pnf 7943 df-mnf 7944 df-xr 7945 df-ltxr 7946 df-le 7947 df-sub 8079 df-neg 8080 df-reap 8481 df-ap 8488 df-div 8577 df-2 8924 df-3 8925 df-4 8926 df-5 8927 df-6 8928 df-7 8929 df-8 8930 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |