![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 8th4div3 | GIF version |
Description: An eighth of four thirds is a sixth. (Contributed by Paul Chapman, 24-Nov-2007.) |
Ref | Expression |
---|---|
8th4div3 | ⊢ ((1 / 8) · (4 / 3)) = (1 / 6) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 7907 | . . . 4 ⊢ 1 ∈ ℂ | |
2 | 8re 9007 | . . . . 5 ⊢ 8 ∈ ℝ | |
3 | 2 | recni 7972 | . . . 4 ⊢ 8 ∈ ℂ |
4 | 4cn 9000 | . . . 4 ⊢ 4 ∈ ℂ | |
5 | 3cn 8997 | . . . 4 ⊢ 3 ∈ ℂ | |
6 | 8pos 9025 | . . . . 5 ⊢ 0 < 8 | |
7 | 2, 6 | gt0ap0ii 8588 | . . . 4 ⊢ 8 # 0 |
8 | 3re 8996 | . . . . 5 ⊢ 3 ∈ ℝ | |
9 | 3pos 9016 | . . . . 5 ⊢ 0 < 3 | |
10 | 8, 9 | gt0ap0ii 8588 | . . . 4 ⊢ 3 # 0 |
11 | 1, 3, 4, 5, 7, 10 | divmuldivapi 8732 | . . 3 ⊢ ((1 / 8) · (4 / 3)) = ((1 · 4) / (8 · 3)) |
12 | 1, 4 | mulcomi 7966 | . . . 4 ⊢ (1 · 4) = (4 · 1) |
13 | 2cn 8993 | . . . . . . . 8 ⊢ 2 ∈ ℂ | |
14 | 4, 13, 5 | mul32i 8107 | . . . . . . 7 ⊢ ((4 · 2) · 3) = ((4 · 3) · 2) |
15 | 4t2e8 9080 | . . . . . . . 8 ⊢ (4 · 2) = 8 | |
16 | 15 | oveq1i 5888 | . . . . . . 7 ⊢ ((4 · 2) · 3) = (8 · 3) |
17 | 14, 16 | eqtr3i 2200 | . . . . . 6 ⊢ ((4 · 3) · 2) = (8 · 3) |
18 | 4, 5, 13 | mulassi 7969 | . . . . . 6 ⊢ ((4 · 3) · 2) = (4 · (3 · 2)) |
19 | 17, 18 | eqtr3i 2200 | . . . . 5 ⊢ (8 · 3) = (4 · (3 · 2)) |
20 | 3t2e6 9078 | . . . . . 6 ⊢ (3 · 2) = 6 | |
21 | 20 | oveq2i 5889 | . . . . 5 ⊢ (4 · (3 · 2)) = (4 · 6) |
22 | 19, 21 | eqtri 2198 | . . . 4 ⊢ (8 · 3) = (4 · 6) |
23 | 12, 22 | oveq12i 5890 | . . 3 ⊢ ((1 · 4) / (8 · 3)) = ((4 · 1) / (4 · 6)) |
24 | 11, 23 | eqtri 2198 | . 2 ⊢ ((1 / 8) · (4 / 3)) = ((4 · 1) / (4 · 6)) |
25 | 6re 9003 | . . . 4 ⊢ 6 ∈ ℝ | |
26 | 25 | recni 7972 | . . 3 ⊢ 6 ∈ ℂ |
27 | 6pos 9023 | . . . 4 ⊢ 0 < 6 | |
28 | 25, 27 | gt0ap0ii 8588 | . . 3 ⊢ 6 # 0 |
29 | 4re 8999 | . . . 4 ⊢ 4 ∈ ℝ | |
30 | 4pos 9019 | . . . 4 ⊢ 0 < 4 | |
31 | 29, 30 | gt0ap0ii 8588 | . . 3 ⊢ 4 # 0 |
32 | divcanap5 8674 | . . . 4 ⊢ ((1 ∈ ℂ ∧ (6 ∈ ℂ ∧ 6 # 0) ∧ (4 ∈ ℂ ∧ 4 # 0)) → ((4 · 1) / (4 · 6)) = (1 / 6)) | |
33 | 1, 32 | mp3an1 1324 | . . 3 ⊢ (((6 ∈ ℂ ∧ 6 # 0) ∧ (4 ∈ ℂ ∧ 4 # 0)) → ((4 · 1) / (4 · 6)) = (1 / 6)) |
34 | 26, 28, 4, 31, 33 | mp4an 427 | . 2 ⊢ ((4 · 1) / (4 · 6)) = (1 / 6) |
35 | 24, 34 | eqtri 2198 | 1 ⊢ ((1 / 8) · (4 / 3)) = (1 / 6) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1353 ∈ wcel 2148 class class class wbr 4005 (class class class)co 5878 ℂcc 7812 0cc0 7814 1c1 7815 · cmul 7819 # cap 8541 / cdiv 8632 2c2 8973 3c3 8974 4c4 8975 6c6 8977 8c8 8979 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7905 ax-resscn 7906 ax-1cn 7907 ax-1re 7908 ax-icn 7909 ax-addcl 7910 ax-addrcl 7911 ax-mulcl 7912 ax-mulrcl 7913 ax-addcom 7914 ax-mulcom 7915 ax-addass 7916 ax-mulass 7917 ax-distr 7918 ax-i2m1 7919 ax-0lt1 7920 ax-1rid 7921 ax-0id 7922 ax-rnegex 7923 ax-precex 7924 ax-cnre 7925 ax-pre-ltirr 7926 ax-pre-ltwlin 7927 ax-pre-lttrn 7928 ax-pre-apti 7929 ax-pre-ltadd 7930 ax-pre-mulgt0 7931 ax-pre-mulext 7932 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-id 4295 df-po 4298 df-iso 4299 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-iota 5180 df-fun 5220 df-fv 5226 df-riota 5834 df-ov 5881 df-oprab 5882 df-mpo 5883 df-pnf 7997 df-mnf 7998 df-xr 7999 df-ltxr 8000 df-le 8001 df-sub 8133 df-neg 8134 df-reap 8535 df-ap 8542 df-div 8633 df-2 8981 df-3 8982 df-4 8983 df-5 8984 df-6 8985 df-7 8986 df-8 8987 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |