| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > decbin0 | GIF version | ||
| Description: Decompose base 4 into base 2. (Contributed by Mario Carneiro, 18-Feb-2014.) | 
| Ref | Expression | 
|---|---|
| decbin.1 | ⊢ 𝐴 ∈ ℕ0 | 
| Ref | Expression | 
|---|---|
| decbin0 | ⊢ (4 · 𝐴) = (2 · (2 · 𝐴)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 2t2e4 9145 | . . 3 ⊢ (2 · 2) = 4 | |
| 2 | 1 | oveq1i 5932 | . 2 ⊢ ((2 · 2) · 𝐴) = (4 · 𝐴) | 
| 3 | 2cn 9061 | . . 3 ⊢ 2 ∈ ℂ | |
| 4 | decbin.1 | . . . 4 ⊢ 𝐴 ∈ ℕ0 | |
| 5 | 4 | nn0cni 9261 | . . 3 ⊢ 𝐴 ∈ ℂ | 
| 6 | 3, 3, 5 | mulassi 8035 | . 2 ⊢ ((2 · 2) · 𝐴) = (2 · (2 · 𝐴)) | 
| 7 | 2, 6 | eqtr3i 2219 | 1 ⊢ (4 · 𝐴) = (2 · (2 · 𝐴)) | 
| Colors of variables: wff set class | 
| Syntax hints: = wceq 1364 ∈ wcel 2167 (class class class)co 5922 · cmul 7884 2c2 9041 4c4 9043 ℕ0cn0 9249 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4151 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-1rid 7986 ax-rnegex 7988 ax-cnre 7990 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-iota 5219 df-fv 5266 df-ov 5925 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-n0 9250 | 
| This theorem is referenced by: decbin2 9597 | 
| Copyright terms: Public domain | W3C validator |