![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > decbin0 | GIF version |
Description: Decompose base 4 into base 2. (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
decbin.1 | ⊢ 𝐴 ∈ ℕ0 |
Ref | Expression |
---|---|
decbin0 | ⊢ (4 · 𝐴) = (2 · (2 · 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2t2e4 9087 | . . 3 ⊢ (2 · 2) = 4 | |
2 | 1 | oveq1i 5898 | . 2 ⊢ ((2 · 2) · 𝐴) = (4 · 𝐴) |
3 | 2cn 9004 | . . 3 ⊢ 2 ∈ ℂ | |
4 | decbin.1 | . . . 4 ⊢ 𝐴 ∈ ℕ0 | |
5 | 4 | nn0cni 9202 | . . 3 ⊢ 𝐴 ∈ ℂ |
6 | 3, 3, 5 | mulassi 7980 | . 2 ⊢ ((2 · 2) · 𝐴) = (2 · (2 · 𝐴)) |
7 | 2, 6 | eqtr3i 2210 | 1 ⊢ (4 · 𝐴) = (2 · (2 · 𝐴)) |
Colors of variables: wff set class |
Syntax hints: = wceq 1363 ∈ wcel 2158 (class class class)co 5888 · cmul 7830 2c2 8984 4c4 8986 ℕ0cn0 9190 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2169 ax-sep 4133 ax-cnex 7916 ax-resscn 7917 ax-1cn 7918 ax-1re 7919 ax-icn 7920 ax-addcl 7921 ax-addrcl 7922 ax-mulcl 7923 ax-mulcom 7926 ax-addass 7927 ax-mulass 7928 ax-distr 7929 ax-1rid 7932 ax-rnegex 7934 ax-cnre 7936 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-nf 1471 df-sb 1773 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ral 2470 df-rex 2471 df-v 2751 df-un 3145 df-in 3147 df-ss 3154 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-br 4016 df-iota 5190 df-fv 5236 df-ov 5891 df-inn 8934 df-2 8992 df-3 8993 df-4 8994 df-n0 9191 |
This theorem is referenced by: decbin2 9538 |
Copyright terms: Public domain | W3C validator |