| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > decbin0 | GIF version | ||
| Description: Decompose base 4 into base 2. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| Ref | Expression |
|---|---|
| decbin.1 | ⊢ 𝐴 ∈ ℕ0 |
| Ref | Expression |
|---|---|
| decbin0 | ⊢ (4 · 𝐴) = (2 · (2 · 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2t2e4 9233 | . . 3 ⊢ (2 · 2) = 4 | |
| 2 | 1 | oveq1i 5984 | . 2 ⊢ ((2 · 2) · 𝐴) = (4 · 𝐴) |
| 3 | 2cn 9149 | . . 3 ⊢ 2 ∈ ℂ | |
| 4 | decbin.1 | . . . 4 ⊢ 𝐴 ∈ ℕ0 | |
| 5 | 4 | nn0cni 9349 | . . 3 ⊢ 𝐴 ∈ ℂ |
| 6 | 3, 3, 5 | mulassi 8123 | . 2 ⊢ ((2 · 2) · 𝐴) = (2 · (2 · 𝐴)) |
| 7 | 2, 6 | eqtr3i 2232 | 1 ⊢ (4 · 𝐴) = (2 · (2 · 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1375 ∈ wcel 2180 (class class class)co 5974 · cmul 7972 2c2 9129 4c4 9131 ℕ0cn0 9337 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 ax-sep 4181 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-mulcom 8068 ax-addass 8069 ax-mulass 8070 ax-distr 8071 ax-1rid 8074 ax-rnegex 8076 ax-cnre 8078 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-v 2781 df-un 3181 df-in 3183 df-ss 3190 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-br 4063 df-iota 5254 df-fv 5302 df-ov 5977 df-inn 9079 df-2 9137 df-3 9138 df-4 9139 df-n0 9338 |
| This theorem is referenced by: decbin2 9686 |
| Copyright terms: Public domain | W3C validator |