![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > decbin0 | GIF version |
Description: Decompose base 4 into base 2. (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
decbin.1 | ⊢ 𝐴 ∈ ℕ0 |
Ref | Expression |
---|---|
decbin0 | ⊢ (4 · 𝐴) = (2 · (2 · 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2t2e4 9139 | . . 3 ⊢ (2 · 2) = 4 | |
2 | 1 | oveq1i 5929 | . 2 ⊢ ((2 · 2) · 𝐴) = (4 · 𝐴) |
3 | 2cn 9055 | . . 3 ⊢ 2 ∈ ℂ | |
4 | decbin.1 | . . . 4 ⊢ 𝐴 ∈ ℕ0 | |
5 | 4 | nn0cni 9255 | . . 3 ⊢ 𝐴 ∈ ℂ |
6 | 3, 3, 5 | mulassi 8030 | . 2 ⊢ ((2 · 2) · 𝐴) = (2 · (2 · 𝐴)) |
7 | 2, 6 | eqtr3i 2216 | 1 ⊢ (4 · 𝐴) = (2 · (2 · 𝐴)) |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∈ wcel 2164 (class class class)co 5919 · cmul 7879 2c2 9035 4c4 9037 ℕ0cn0 9243 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-sep 4148 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-1rid 7981 ax-rnegex 7983 ax-cnre 7985 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-iota 5216 df-fv 5263 df-ov 5922 df-inn 8985 df-2 9043 df-3 9044 df-4 9045 df-n0 9244 |
This theorem is referenced by: decbin2 9591 |
Copyright terms: Public domain | W3C validator |