| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > decbin0 | GIF version | ||
| Description: Decompose base 4 into base 2. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| Ref | Expression |
|---|---|
| decbin.1 | ⊢ 𝐴 ∈ ℕ0 |
| Ref | Expression |
|---|---|
| decbin0 | ⊢ (4 · 𝐴) = (2 · (2 · 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2t2e4 9273 | . . 3 ⊢ (2 · 2) = 4 | |
| 2 | 1 | oveq1i 6017 | . 2 ⊢ ((2 · 2) · 𝐴) = (4 · 𝐴) |
| 3 | 2cn 9189 | . . 3 ⊢ 2 ∈ ℂ | |
| 4 | decbin.1 | . . . 4 ⊢ 𝐴 ∈ ℕ0 | |
| 5 | 4 | nn0cni 9389 | . . 3 ⊢ 𝐴 ∈ ℂ |
| 6 | 3, 3, 5 | mulassi 8163 | . 2 ⊢ ((2 · 2) · 𝐴) = (2 · (2 · 𝐴)) |
| 7 | 2, 6 | eqtr3i 2252 | 1 ⊢ (4 · 𝐴) = (2 · (2 · 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∈ wcel 2200 (class class class)co 6007 · cmul 8012 2c2 9169 4c4 9171 ℕ0cn0 9377 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-sep 4202 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-1rid 8114 ax-rnegex 8116 ax-cnre 8118 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-iota 5278 df-fv 5326 df-ov 6010 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-n0 9378 |
| This theorem is referenced by: decbin2 9726 |
| Copyright terms: Public domain | W3C validator |