Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > decbin0 | GIF version |
Description: Decompose base 4 into base 2. (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
decbin.1 | ⊢ 𝐴 ∈ ℕ0 |
Ref | Expression |
---|---|
decbin0 | ⊢ (4 · 𝐴) = (2 · (2 · 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2t2e4 8992 | . . 3 ⊢ (2 · 2) = 4 | |
2 | 1 | oveq1i 5836 | . 2 ⊢ ((2 · 2) · 𝐴) = (4 · 𝐴) |
3 | 2cn 8909 | . . 3 ⊢ 2 ∈ ℂ | |
4 | decbin.1 | . . . 4 ⊢ 𝐴 ∈ ℕ0 | |
5 | 4 | nn0cni 9107 | . . 3 ⊢ 𝐴 ∈ ℂ |
6 | 3, 3, 5 | mulassi 7889 | . 2 ⊢ ((2 · 2) · 𝐴) = (2 · (2 · 𝐴)) |
7 | 2, 6 | eqtr3i 2180 | 1 ⊢ (4 · 𝐴) = (2 · (2 · 𝐴)) |
Colors of variables: wff set class |
Syntax hints: = wceq 1335 ∈ wcel 2128 (class class class)co 5826 · cmul 7739 2c2 8889 4c4 8891 ℕ0cn0 9095 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 ax-sep 4084 ax-cnex 7825 ax-resscn 7826 ax-1cn 7827 ax-1re 7828 ax-icn 7829 ax-addcl 7830 ax-addrcl 7831 ax-mulcl 7832 ax-mulcom 7835 ax-addass 7836 ax-mulass 7837 ax-distr 7838 ax-1rid 7841 ax-rnegex 7843 ax-cnre 7845 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-un 3106 df-in 3108 df-ss 3115 df-sn 3567 df-pr 3568 df-op 3570 df-uni 3775 df-int 3810 df-br 3968 df-iota 5137 df-fv 5180 df-ov 5829 df-inn 8839 df-2 8897 df-3 8898 df-4 8899 df-n0 9096 |
This theorem is referenced by: decbin2 9440 |
Copyright terms: Public domain | W3C validator |