ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sincos4thpi GIF version

Theorem sincos4thpi 14975
Description: The sine and cosine of π / 4. (Contributed by Paul Chapman, 25-Jan-2008.)
Assertion
Ref Expression
sincos4thpi ((sin‘(π / 4)) = (1 / (√‘2)) ∧ (cos‘(π / 4)) = (1 / (√‘2)))

Proof of Theorem sincos4thpi
StepHypRef Expression
1 halfcn 9196 . . . . . . . . . 10 (1 / 2) ∈ ℂ
2 ax-1cn 7965 . . . . . . . . . . 11 1 ∈ ℂ
3 2halves 9211 . . . . . . . . . . 11 (1 ∈ ℂ → ((1 / 2) + (1 / 2)) = 1)
42, 3ax-mp 5 . . . . . . . . . 10 ((1 / 2) + (1 / 2)) = 1
5 sincosq1eq 14974 . . . . . . . . . 10 (((1 / 2) ∈ ℂ ∧ (1 / 2) ∈ ℂ ∧ ((1 / 2) + (1 / 2)) = 1) → (sin‘((1 / 2) · (π / 2))) = (cos‘((1 / 2) · (π / 2))))
61, 1, 4, 5mp3an 1348 . . . . . . . . 9 (sin‘((1 / 2) · (π / 2))) = (cos‘((1 / 2) · (π / 2)))
76oveq2i 5929 . . . . . . . 8 ((sin‘((1 / 2) · (π / 2))) · (sin‘((1 / 2) · (π / 2)))) = ((sin‘((1 / 2) · (π / 2))) · (cos‘((1 / 2) · (π / 2))))
87oveq2i 5929 . . . . . . 7 (2 · ((sin‘((1 / 2) · (π / 2))) · (sin‘((1 / 2) · (π / 2))))) = (2 · ((sin‘((1 / 2) · (π / 2))) · (cos‘((1 / 2) · (π / 2)))))
9 2cn 9053 . . . . . . . . . . . 12 2 ∈ ℂ
10 pire 14921 . . . . . . . . . . . . 13 π ∈ ℝ
1110recni 8031 . . . . . . . . . . . 12 π ∈ ℂ
12 2ap0 9075 . . . . . . . . . . . 12 2 # 0
132, 9, 11, 9, 12, 12divmuldivapi 8791 . . . . . . . . . . 11 ((1 / 2) · (π / 2)) = ((1 · π) / (2 · 2))
1411mullidi 8022 . . . . . . . . . . . 12 (1 · π) = π
15 2t2e4 9136 . . . . . . . . . . . 12 (2 · 2) = 4
1614, 15oveq12i 5930 . . . . . . . . . . 11 ((1 · π) / (2 · 2)) = (π / 4)
1713, 16eqtri 2214 . . . . . . . . . 10 ((1 / 2) · (π / 2)) = (π / 4)
1817fveq2i 5557 . . . . . . . . 9 (sin‘((1 / 2) · (π / 2))) = (sin‘(π / 4))
1918, 18oveq12i 5930 . . . . . . . 8 ((sin‘((1 / 2) · (π / 2))) · (sin‘((1 / 2) · (π / 2)))) = ((sin‘(π / 4)) · (sin‘(π / 4)))
2019oveq2i 5929 . . . . . . 7 (2 · ((sin‘((1 / 2) · (π / 2))) · (sin‘((1 / 2) · (π / 2))))) = (2 · ((sin‘(π / 4)) · (sin‘(π / 4))))
219, 12recidapi 8762 . . . . . . . . . . 11 (2 · (1 / 2)) = 1
2221oveq1i 5928 . . . . . . . . . 10 ((2 · (1 / 2)) · (π / 2)) = (1 · (π / 2))
23 2re 9052 . . . . . . . . . . . . 13 2 ∈ ℝ
2410, 23, 12redivclapi 8798 . . . . . . . . . . . 12 (π / 2) ∈ ℝ
2524recni 8031 . . . . . . . . . . 11 (π / 2) ∈ ℂ
269, 1, 25mulassi 8028 . . . . . . . . . 10 ((2 · (1 / 2)) · (π / 2)) = (2 · ((1 / 2) · (π / 2)))
2725mullidi 8022 . . . . . . . . . 10 (1 · (π / 2)) = (π / 2)
2822, 26, 273eqtr3i 2222 . . . . . . . . 9 (2 · ((1 / 2) · (π / 2))) = (π / 2)
2928fveq2i 5557 . . . . . . . 8 (sin‘(2 · ((1 / 2) · (π / 2)))) = (sin‘(π / 2))
301, 25mulcli 8024 . . . . . . . . 9 ((1 / 2) · (π / 2)) ∈ ℂ
31 sin2t 11892 . . . . . . . . 9 (((1 / 2) · (π / 2)) ∈ ℂ → (sin‘(2 · ((1 / 2) · (π / 2)))) = (2 · ((sin‘((1 / 2) · (π / 2))) · (cos‘((1 / 2) · (π / 2))))))
3230, 31ax-mp 5 . . . . . . . 8 (sin‘(2 · ((1 / 2) · (π / 2)))) = (2 · ((sin‘((1 / 2) · (π / 2))) · (cos‘((1 / 2) · (π / 2)))))
33 sinhalfpi 14931 . . . . . . . 8 (sin‘(π / 2)) = 1
3429, 32, 333eqtr3i 2222 . . . . . . 7 (2 · ((sin‘((1 / 2) · (π / 2))) · (cos‘((1 / 2) · (π / 2))))) = 1
358, 20, 343eqtr3i 2222 . . . . . 6 (2 · ((sin‘(π / 4)) · (sin‘(π / 4)))) = 1
3635fveq2i 5557 . . . . 5 (√‘(2 · ((sin‘(π / 4)) · (sin‘(π / 4))))) = (√‘1)
37 4re 9059 . . . . . . . . 9 4 ∈ ℝ
38 4ap0 9081 . . . . . . . . 9 4 # 0
3910, 37, 38redivclapi 8798 . . . . . . . 8 (π / 4) ∈ ℝ
40 resincl 11863 . . . . . . . 8 ((π / 4) ∈ ℝ → (sin‘(π / 4)) ∈ ℝ)
4139, 40ax-mp 5 . . . . . . 7 (sin‘(π / 4)) ∈ ℝ
4241, 41remulcli 8033 . . . . . 6 ((sin‘(π / 4)) · (sin‘(π / 4))) ∈ ℝ
43 0le2 9072 . . . . . 6 0 ≤ 2
4441msqge0i 8636 . . . . . 6 0 ≤ ((sin‘(π / 4)) · (sin‘(π / 4)))
4523, 42, 43, 44sqrtmulii 11278 . . . . 5 (√‘(2 · ((sin‘(π / 4)) · (sin‘(π / 4))))) = ((√‘2) · (√‘((sin‘(π / 4)) · (sin‘(π / 4)))))
46 sqrt1 11190 . . . . 5 (√‘1) = 1
4736, 45, 463eqtr3ri 2223 . . . 4 1 = ((√‘2) · (√‘((sin‘(π / 4)) · (sin‘(π / 4)))))
4842sqrtcli 11264 . . . . . . 7 (0 ≤ ((sin‘(π / 4)) · (sin‘(π / 4))) → (√‘((sin‘(π / 4)) · (sin‘(π / 4)))) ∈ ℝ)
4944, 48ax-mp 5 . . . . . 6 (√‘((sin‘(π / 4)) · (sin‘(π / 4)))) ∈ ℝ
5049recni 8031 . . . . 5 (√‘((sin‘(π / 4)) · (sin‘(π / 4)))) ∈ ℂ
51 sqrt2re 12301 . . . . . . 7 (√‘2) ∈ ℝ
5251recni 8031 . . . . . 6 (√‘2) ∈ ℂ
53 2pos 9073 . . . . . . . 8 0 < 2
5423, 53sqrtgt0ii 11275 . . . . . . 7 0 < (√‘2)
5551, 54gt0ap0ii 8647 . . . . . 6 (√‘2) # 0
5652, 55pm3.2i 272 . . . . 5 ((√‘2) ∈ ℂ ∧ (√‘2) # 0)
57 divmulap2 8695 . . . . 5 ((1 ∈ ℂ ∧ (√‘((sin‘(π / 4)) · (sin‘(π / 4)))) ∈ ℂ ∧ ((√‘2) ∈ ℂ ∧ (√‘2) # 0)) → ((1 / (√‘2)) = (√‘((sin‘(π / 4)) · (sin‘(π / 4)))) ↔ 1 = ((√‘2) · (√‘((sin‘(π / 4)) · (sin‘(π / 4)))))))
582, 50, 56, 57mp3an 1348 . . . 4 ((1 / (√‘2)) = (√‘((sin‘(π / 4)) · (sin‘(π / 4)))) ↔ 1 = ((√‘2) · (√‘((sin‘(π / 4)) · (sin‘(π / 4))))))
5947, 58mpbir 146 . . 3 (1 / (√‘2)) = (√‘((sin‘(π / 4)) · (sin‘(π / 4))))
60 0re 8019 . . . . 5 0 ∈ ℝ
61 pipos 14923 . . . . . . . 8 0 < π
62 4pos 9079 . . . . . . . 8 0 < 4
6310, 37, 61, 62divgt0ii 8938 . . . . . . 7 0 < (π / 4)
64 1re 8018 . . . . . . . 8 1 ∈ ℝ
65 pigt2lt4 14919 . . . . . . . . . . 11 (2 < π ∧ π < 4)
6665simpri 113 . . . . . . . . . 10 π < 4
6710, 37, 37, 62ltdiv1ii 8948 . . . . . . . . . 10 (π < 4 ↔ (π / 4) < (4 / 4))
6866, 67mpbi 145 . . . . . . . . 9 (π / 4) < (4 / 4)
6937recni 8031 . . . . . . . . . 10 4 ∈ ℂ
7069, 38dividapi 8764 . . . . . . . . 9 (4 / 4) = 1
7168, 70breqtri 4054 . . . . . . . 8 (π / 4) < 1
7239, 64, 71ltleii 8122 . . . . . . 7 (π / 4) ≤ 1
73 0xr 8066 . . . . . . . 8 0 ∈ ℝ*
74 elioc2 10002 . . . . . . . 8 ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → ((π / 4) ∈ (0(,]1) ↔ ((π / 4) ∈ ℝ ∧ 0 < (π / 4) ∧ (π / 4) ≤ 1)))
7573, 64, 74mp2an 426 . . . . . . 7 ((π / 4) ∈ (0(,]1) ↔ ((π / 4) ∈ ℝ ∧ 0 < (π / 4) ∧ (π / 4) ≤ 1))
7639, 63, 72, 75mpbir3an 1181 . . . . . 6 (π / 4) ∈ (0(,]1)
77 sin01gt0 11905 . . . . . 6 ((π / 4) ∈ (0(,]1) → 0 < (sin‘(π / 4)))
7876, 77ax-mp 5 . . . . 5 0 < (sin‘(π / 4))
7960, 41, 78ltleii 8122 . . . 4 0 ≤ (sin‘(π / 4))
8041sqrtmsqi 11266 . . . 4 (0 ≤ (sin‘(π / 4)) → (√‘((sin‘(π / 4)) · (sin‘(π / 4)))) = (sin‘(π / 4)))
8179, 80ax-mp 5 . . 3 (√‘((sin‘(π / 4)) · (sin‘(π / 4)))) = (sin‘(π / 4))
8259, 81eqtr2i 2215 . 2 (sin‘(π / 4)) = (1 / (√‘2))
8359, 81eqtri 2214 . . 3 (1 / (√‘2)) = (sin‘(π / 4))
8417fveq2i 5557 . . . 4 (cos‘((1 / 2) · (π / 2))) = (cos‘(π / 4))
856, 18, 843eqtr3i 2222 . . 3 (sin‘(π / 4)) = (cos‘(π / 4))
8683, 85eqtr2i 2215 . 2 (cos‘(π / 4)) = (1 / (√‘2))
8782, 86pm3.2i 272 1 ((sin‘(π / 4)) = (1 / (√‘2)) ∧ (cos‘(π / 4)) = (1 / (√‘2)))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2164   class class class wbr 4029  cfv 5254  (class class class)co 5918  cc 7870  cr 7871  0cc0 7872  1c1 7873   + caddc 7875   · cmul 7877  *cxr 8053   < clt 8054  cle 8055   # cap 8600   / cdiv 8691  2c2 9033  4c4 9035  (,]cioc 9955  csqrt 11140  sincsin 11787  cosccos 11788  πcpi 11790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992  ax-pre-suploc 7993  ax-addf 7994  ax-mulf 7995
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-disj 4007  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-of 6130  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-frec 6444  df-1o 6469  df-oadd 6473  df-er 6587  df-map 6704  df-pm 6705  df-en 6795  df-dom 6796  df-fin 6797  df-sup 7043  df-inf 7044  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-5 9044  df-6 9045  df-7 9046  df-8 9047  df-9 9048  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-xneg 9838  df-xadd 9839  df-ioo 9958  df-ioc 9959  df-ico 9960  df-icc 9961  df-fz 10075  df-fzo 10209  df-seqfrec 10519  df-exp 10610  df-fac 10797  df-bc 10819  df-ihash 10847  df-shft 10959  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-clim 11422  df-sumdc 11497  df-ef 11791  df-sin 11793  df-cos 11794  df-pi 11796  df-rest 12852  df-topgen 12871  df-psmet 14039  df-xmet 14040  df-met 14041  df-bl 14042  df-mopn 14043  df-top 14166  df-topon 14179  df-bases 14211  df-ntr 14264  df-cn 14356  df-cnp 14357  df-tx 14421  df-cncf 14726  df-limced 14810  df-dvap 14811
This theorem is referenced by:  tan4thpi  14976
  Copyright terms: Public domain W3C validator