ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  numma GIF version

Theorem numma 9218
Description: Perform a multiply-add of two decimal integers 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
numma.1 𝑇 ∈ ℕ0
numma.2 𝐴 ∈ ℕ0
numma.3 𝐵 ∈ ℕ0
numma.4 𝐶 ∈ ℕ0
numma.5 𝐷 ∈ ℕ0
numma.6 𝑀 = ((𝑇 · 𝐴) + 𝐵)
numma.7 𝑁 = ((𝑇 · 𝐶) + 𝐷)
numma.8 𝑃 ∈ ℕ0
numma.9 ((𝐴 · 𝑃) + 𝐶) = 𝐸
numma.10 ((𝐵 · 𝑃) + 𝐷) = 𝐹
Assertion
Ref Expression
numma ((𝑀 · 𝑃) + 𝑁) = ((𝑇 · 𝐸) + 𝐹)

Proof of Theorem numma
StepHypRef Expression
1 numma.6 . . . 4 𝑀 = ((𝑇 · 𝐴) + 𝐵)
21oveq1i 5777 . . 3 (𝑀 · 𝑃) = (((𝑇 · 𝐴) + 𝐵) · 𝑃)
3 numma.7 . . 3 𝑁 = ((𝑇 · 𝐶) + 𝐷)
42, 3oveq12i 5779 . 2 ((𝑀 · 𝑃) + 𝑁) = ((((𝑇 · 𝐴) + 𝐵) · 𝑃) + ((𝑇 · 𝐶) + 𝐷))
5 numma.1 . . . . . . 7 𝑇 ∈ ℕ0
65nn0cni 8982 . . . . . 6 𝑇 ∈ ℂ
7 numma.2 . . . . . . . 8 𝐴 ∈ ℕ0
87nn0cni 8982 . . . . . . 7 𝐴 ∈ ℂ
9 numma.8 . . . . . . . 8 𝑃 ∈ ℕ0
109nn0cni 8982 . . . . . . 7 𝑃 ∈ ℂ
118, 10mulcli 7764 . . . . . 6 (𝐴 · 𝑃) ∈ ℂ
12 numma.4 . . . . . . 7 𝐶 ∈ ℕ0
1312nn0cni 8982 . . . . . 6 𝐶 ∈ ℂ
146, 11, 13adddii 7769 . . . . 5 (𝑇 · ((𝐴 · 𝑃) + 𝐶)) = ((𝑇 · (𝐴 · 𝑃)) + (𝑇 · 𝐶))
156, 8, 10mulassi 7768 . . . . . 6 ((𝑇 · 𝐴) · 𝑃) = (𝑇 · (𝐴 · 𝑃))
1615oveq1i 5777 . . . . 5 (((𝑇 · 𝐴) · 𝑃) + (𝑇 · 𝐶)) = ((𝑇 · (𝐴 · 𝑃)) + (𝑇 · 𝐶))
1714, 16eqtr4i 2161 . . . 4 (𝑇 · ((𝐴 · 𝑃) + 𝐶)) = (((𝑇 · 𝐴) · 𝑃) + (𝑇 · 𝐶))
1817oveq1i 5777 . . 3 ((𝑇 · ((𝐴 · 𝑃) + 𝐶)) + ((𝐵 · 𝑃) + 𝐷)) = ((((𝑇 · 𝐴) · 𝑃) + (𝑇 · 𝐶)) + ((𝐵 · 𝑃) + 𝐷))
196, 8mulcli 7764 . . . . . 6 (𝑇 · 𝐴) ∈ ℂ
20 numma.3 . . . . . . 7 𝐵 ∈ ℕ0
2120nn0cni 8982 . . . . . 6 𝐵 ∈ ℂ
2219, 21, 10adddiri 7770 . . . . 5 (((𝑇 · 𝐴) + 𝐵) · 𝑃) = (((𝑇 · 𝐴) · 𝑃) + (𝐵 · 𝑃))
2322oveq1i 5777 . . . 4 ((((𝑇 · 𝐴) + 𝐵) · 𝑃) + ((𝑇 · 𝐶) + 𝐷)) = ((((𝑇 · 𝐴) · 𝑃) + (𝐵 · 𝑃)) + ((𝑇 · 𝐶) + 𝐷))
2419, 10mulcli 7764 . . . . 5 ((𝑇 · 𝐴) · 𝑃) ∈ ℂ
256, 13mulcli 7764 . . . . 5 (𝑇 · 𝐶) ∈ ℂ
2621, 10mulcli 7764 . . . . 5 (𝐵 · 𝑃) ∈ ℂ
27 numma.5 . . . . . 6 𝐷 ∈ ℕ0
2827nn0cni 8982 . . . . 5 𝐷 ∈ ℂ
2924, 25, 26, 28add4i 7920 . . . 4 ((((𝑇 · 𝐴) · 𝑃) + (𝑇 · 𝐶)) + ((𝐵 · 𝑃) + 𝐷)) = ((((𝑇 · 𝐴) · 𝑃) + (𝐵 · 𝑃)) + ((𝑇 · 𝐶) + 𝐷))
3023, 29eqtr4i 2161 . . 3 ((((𝑇 · 𝐴) + 𝐵) · 𝑃) + ((𝑇 · 𝐶) + 𝐷)) = ((((𝑇 · 𝐴) · 𝑃) + (𝑇 · 𝐶)) + ((𝐵 · 𝑃) + 𝐷))
3118, 30eqtr4i 2161 . 2 ((𝑇 · ((𝐴 · 𝑃) + 𝐶)) + ((𝐵 · 𝑃) + 𝐷)) = ((((𝑇 · 𝐴) + 𝐵) · 𝑃) + ((𝑇 · 𝐶) + 𝐷))
32 numma.9 . . . 4 ((𝐴 · 𝑃) + 𝐶) = 𝐸
3332oveq2i 5778 . . 3 (𝑇 · ((𝐴 · 𝑃) + 𝐶)) = (𝑇 · 𝐸)
34 numma.10 . . 3 ((𝐵 · 𝑃) + 𝐷) = 𝐹
3533, 34oveq12i 5779 . 2 ((𝑇 · ((𝐴 · 𝑃) + 𝐶)) + ((𝐵 · 𝑃) + 𝐷)) = ((𝑇 · 𝐸) + 𝐹)
364, 31, 353eqtr2i 2164 1 ((𝑀 · 𝑃) + 𝑁) = ((𝑇 · 𝐸) + 𝐹)
Colors of variables: wff set class
Syntax hints:   = wceq 1331  wcel 1480  (class class class)co 5767   + caddc 7616   · cmul 7618  0cn0 8970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-cnex 7704  ax-resscn 7705  ax-1re 7707  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-rnegex 7722
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-v 2683  df-un 3070  df-in 3072  df-ss 3079  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-br 3925  df-iota 5083  df-fv 5126  df-ov 5770  df-inn 8714  df-n0 8971
This theorem is referenced by:  nummac  9219  numadd  9221  decma  9225
  Copyright terms: Public domain W3C validator