ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  n0i GIF version

Theorem n0i 3465
Description: If a set has elements, it is not empty. A set with elements is also inhabited, see elex2 2787. (Contributed by NM, 31-Dec-1993.)
Assertion
Ref Expression
n0i (𝐵𝐴 → ¬ 𝐴 = ∅)

Proof of Theorem n0i
StepHypRef Expression
1 noel 3463 . . 3 ¬ 𝐵 ∈ ∅
2 eleq2 2268 . . 3 (𝐴 = ∅ → (𝐵𝐴𝐵 ∈ ∅))
31, 2mtbiri 676 . 2 (𝐴 = ∅ → ¬ 𝐵𝐴)
43con2i 628 1 (𝐵𝐴 → ¬ 𝐴 = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1372  wcel 2175  c0 3459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-dif 3167  df-nul 3460
This theorem is referenced by:  ne0i  3466  n0ii  3468  unidif0  4210  iin0r  4212  nnm00  6615  dif1enen  6976  enq0tr  7546  gsum0g  13170  gsumval2  13171
  Copyright terms: Public domain W3C validator