![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > n0i | GIF version |
Description: If a set has elements, it is not empty. A set with elements is also inhabited, see elex2 2755. (Contributed by NM, 31-Dec-1993.) |
Ref | Expression |
---|---|
n0i | ⊢ (𝐵 ∈ 𝐴 → ¬ 𝐴 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 3428 | . . 3 ⊢ ¬ 𝐵 ∈ ∅ | |
2 | eleq2 2241 | . . 3 ⊢ (𝐴 = ∅ → (𝐵 ∈ 𝐴 ↔ 𝐵 ∈ ∅)) | |
3 | 1, 2 | mtbiri 675 | . 2 ⊢ (𝐴 = ∅ → ¬ 𝐵 ∈ 𝐴) |
4 | 3 | con2i 627 | 1 ⊢ (𝐵 ∈ 𝐴 → ¬ 𝐴 = ∅) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1353 ∈ wcel 2148 ∅c0 3424 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2741 df-dif 3133 df-nul 3425 |
This theorem is referenced by: ne0i 3431 n0ii 3433 unidif0 4169 iin0r 4171 nnm00 6533 dif1enen 6882 enq0tr 7435 |
Copyright terms: Public domain | W3C validator |