![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > n0i | GIF version |
Description: If a set has elements, it is not empty. A set with elements is also inhabited, see elex2 2768. (Contributed by NM, 31-Dec-1993.) |
Ref | Expression |
---|---|
n0i | ⊢ (𝐵 ∈ 𝐴 → ¬ 𝐴 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 3441 | . . 3 ⊢ ¬ 𝐵 ∈ ∅ | |
2 | eleq2 2253 | . . 3 ⊢ (𝐴 = ∅ → (𝐵 ∈ 𝐴 ↔ 𝐵 ∈ ∅)) | |
3 | 1, 2 | mtbiri 676 | . 2 ⊢ (𝐴 = ∅ → ¬ 𝐵 ∈ 𝐴) |
4 | 3 | con2i 628 | 1 ⊢ (𝐵 ∈ 𝐴 → ¬ 𝐴 = ∅) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1364 ∈ wcel 2160 ∅c0 3437 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-v 2754 df-dif 3146 df-nul 3438 |
This theorem is referenced by: ne0i 3444 n0ii 3446 unidif0 4185 iin0r 4187 nnm00 6555 dif1enen 6908 enq0tr 7463 |
Copyright terms: Public domain | W3C validator |