ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nel02 GIF version

Theorem nel02 3465
Description: The empty set has no elements. (Contributed by Peter Mazsa, 4-Jan-2018.)
Assertion
Ref Expression
nel02 (𝐴 = ∅ → ¬ 𝐵𝐴)

Proof of Theorem nel02
StepHypRef Expression
1 noel 3464 . 2 ¬ 𝐵 ∈ ∅
2 eleq2 2269 . 2 (𝐴 = ∅ → (𝐵𝐴𝐵 ∈ ∅))
31, 2mtbiri 677 1 (𝐴 = ∅ → ¬ 𝐵𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1373  wcel 2176  c0 3460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-dif 3168  df-nul 3461
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator