![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ssel | GIF version |
Description: Membership relationships follow from a subclass relationship. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
ssel | ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2 3168 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
2 | 1 | biimpi 120 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
3 | 2 | 19.21bi 1569 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
4 | 3 | anim2d 337 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 = 𝐶 ∧ 𝑥 ∈ 𝐴) → (𝑥 = 𝐶 ∧ 𝑥 ∈ 𝐵))) |
5 | 4 | eximdv 1891 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑥(𝑥 = 𝐶 ∧ 𝑥 ∈ 𝐴) → ∃𝑥(𝑥 = 𝐶 ∧ 𝑥 ∈ 𝐵))) |
6 | df-clel 2189 | . 2 ⊢ (𝐶 ∈ 𝐴 ↔ ∃𝑥(𝑥 = 𝐶 ∧ 𝑥 ∈ 𝐴)) | |
7 | df-clel 2189 | . 2 ⊢ (𝐶 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐶 ∧ 𝑥 ∈ 𝐵)) | |
8 | 5, 6, 7 | 3imtr4g 205 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∀wal 1362 = wceq 1364 ∃wex 1503 ∈ wcel 2164 ⊆ wss 3153 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-in 3159 df-ss 3166 |
This theorem is referenced by: ssel2 3174 sseli 3175 sseld 3178 sstr2 3186 nelss 3240 ssrexf 3241 ssralv 3243 ssrexv 3244 ralss 3245 rexss 3246 ssconb 3292 sscon 3293 ssdif 3294 unss1 3328 ssrin 3384 difin2 3421 reuss2 3439 reupick 3443 sssnm 3780 uniss 3856 ss2iun 3927 ssiun 3954 iinss 3964 disjss2 4009 disjss1 4012 pwnss 4188 sspwb 4245 ssopab2b 4307 soss 4345 sucssel 4455 ssorduni 4519 onintonm 4549 onnmin 4600 ssnel 4601 wessep 4610 ssrel 4747 ssrel2 4749 ssrelrel 4759 xpss12 4766 cnvss 4835 dmss 4861 elreldm 4888 dmcosseq 4933 relssres 4980 iss 4988 resopab2 4989 issref 5048 ssrnres 5108 dfco2a 5166 cores 5169 funssres 5296 fununi 5322 funimaexglem 5337 dfimafn 5605 funimass4 5607 funimass3 5674 dff4im 5704 funfvima2 5791 funfvima3 5792 f1elima 5816 riotass2 5900 ssoprab2b 5975 resoprab2 6015 releldm2 6238 reldmtpos 6306 dmtpos 6309 rdgss 6436 ss2ixp 6765 fiintim 6985 negf1o 8401 lbreu 8964 lbinf 8967 eqreznegel 9679 negm 9680 iccsupr 10032 negfi 11371 sumrbdclem 11520 prodrbdclem 11714 fprodmodd 11784 mulgpropdg 13234 subgintm 13268 subrngintm 13708 subrgintm 13739 islssm 13853 lspsnel6 13904 islidlm 13975 metrest 14674 bdop 15367 bj-nnen2lp 15446 exmidsbthrlem 15512 |
Copyright terms: Public domain | W3C validator |