| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssel | GIF version | ||
| Description: Membership relationships follow from a subclass relationship. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| ssel | ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssalel 3180 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 2 | 1 | biimpi 120 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
| 3 | 2 | 19.21bi 1580 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
| 4 | 3 | anim2d 337 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 = 𝐶 ∧ 𝑥 ∈ 𝐴) → (𝑥 = 𝐶 ∧ 𝑥 ∈ 𝐵))) |
| 5 | 4 | eximdv 1902 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑥(𝑥 = 𝐶 ∧ 𝑥 ∈ 𝐴) → ∃𝑥(𝑥 = 𝐶 ∧ 𝑥 ∈ 𝐵))) |
| 6 | df-clel 2200 | . 2 ⊢ (𝐶 ∈ 𝐴 ↔ ∃𝑥(𝑥 = 𝐶 ∧ 𝑥 ∈ 𝐴)) | |
| 7 | df-clel 2200 | . 2 ⊢ (𝐶 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐶 ∧ 𝑥 ∈ 𝐵)) | |
| 8 | 5, 6, 7 | 3imtr4g 205 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∀wal 1370 = wceq 1372 ∃wex 1514 ∈ wcel 2175 ⊆ wss 3165 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-11 1528 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-in 3171 df-ss 3178 |
| This theorem is referenced by: ssel2 3187 sseli 3188 sseld 3191 sstr2 3199 nelss 3253 ssrexf 3254 ssralv 3256 ssrexv 3257 ralss 3258 rexss 3259 ssconb 3305 sscon 3306 ssdif 3307 unss1 3341 ssrin 3397 difin2 3434 reuss2 3452 reupick 3456 sssnm 3794 uniss 3870 ss2iun 3941 ssiun 3968 iinss 3978 disjss2 4023 disjss1 4026 pwnss 4202 sspwb 4259 ssopab2b 4322 soss 4360 sucssel 4470 ssorduni 4534 onintonm 4564 onnmin 4615 ssnel 4616 wessep 4625 ssrel 4762 ssrel2 4764 ssrelrel 4774 xpss12 4781 cnvss 4850 dmss 4876 elreldm 4903 dmcosseq 4949 relssres 4996 iss 5004 resopab2 5005 issref 5064 ssrnres 5124 dfco2a 5182 cores 5185 funssres 5312 fununi 5341 funimaexglem 5356 dfimafn 5626 funimass4 5628 funimass3 5695 dff4im 5725 funfvima2 5816 funfvima3 5817 f1elima 5841 riotass2 5925 ssoprab2b 6001 resoprab2 6041 releldm2 6270 reldmtpos 6338 dmtpos 6341 rdgss 6468 ss2ixp 6797 fiintim 7027 negf1o 8453 lbreu 9017 lbinf 9020 eqreznegel 9734 negm 9735 iccsupr 10087 negfi 11481 sumrbdclem 11630 prodrbdclem 11824 fprodmodd 11894 mulgpropdg 13442 subgintm 13476 subrngintm 13916 subrgintm 13947 islssm 14061 lspsnel6 14112 islidlm 14183 metrest 14920 bdop 15744 bj-nnen2lp 15823 exmidsbthrlem 15894 |
| Copyright terms: Public domain | W3C validator |