| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssel | GIF version | ||
| Description: Membership relationships follow from a subclass relationship. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| ssel | ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssalel 3185 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 2 | 1 | biimpi 120 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
| 3 | 2 | 19.21bi 1582 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
| 4 | 3 | anim2d 337 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 = 𝐶 ∧ 𝑥 ∈ 𝐴) → (𝑥 = 𝐶 ∧ 𝑥 ∈ 𝐵))) |
| 5 | 4 | eximdv 1904 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑥(𝑥 = 𝐶 ∧ 𝑥 ∈ 𝐴) → ∃𝑥(𝑥 = 𝐶 ∧ 𝑥 ∈ 𝐵))) |
| 6 | df-clel 2202 | . 2 ⊢ (𝐶 ∈ 𝐴 ↔ ∃𝑥(𝑥 = 𝐶 ∧ 𝑥 ∈ 𝐴)) | |
| 7 | df-clel 2202 | . 2 ⊢ (𝐶 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐶 ∧ 𝑥 ∈ 𝐵)) | |
| 8 | 5, 6, 7 | 3imtr4g 205 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∀wal 1371 = wceq 1373 ∃wex 1516 ∈ wcel 2177 ⊆ wss 3170 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-in 3176 df-ss 3183 |
| This theorem is referenced by: ssel2 3192 sseli 3193 sseld 3196 sstr2 3204 nelss 3258 ssrexf 3259 ssralv 3261 ssrexv 3262 ralss 3263 rexss 3264 ssconb 3310 sscon 3311 ssdif 3312 unss1 3346 ssrin 3402 difin2 3439 reuss2 3457 reupick 3461 sssnm 3803 uniss 3880 ss2iun 3951 ssiun 3978 iinss 3988 disjss2 4033 disjss1 4036 pwnss 4214 sspwb 4273 ssopab2b 4336 soss 4374 sucssel 4484 ssorduni 4548 onintonm 4578 onnmin 4629 ssnel 4630 wessep 4639 ssrel 4776 ssrel2 4778 ssrelrel 4788 xpss12 4795 cnvss 4864 dmss 4891 elreldm 4918 dmcosseq 4964 relssres 5011 iss 5019 resopab2 5020 issref 5079 ssrnres 5139 dfco2a 5197 cores 5200 funssres 5327 fununi 5356 funimaexglem 5371 dfimafn 5645 funimass4 5647 funimass3 5714 dff4im 5744 funfvima2 5835 funfvima3 5836 f1elima 5860 riotass2 5944 ssoprab2b 6020 resoprab2 6060 releldm2 6289 reldmtpos 6357 dmtpos 6360 rdgss 6487 ss2ixp 6816 1ndom2 6982 fiintim 7049 negf1o 8484 lbreu 9048 lbinf 9051 eqreznegel 9765 negm 9766 iccsupr 10118 negfi 11624 sumrbdclem 11773 prodrbdclem 11967 fprodmodd 12037 mulgpropdg 13585 subgintm 13619 subrngintm 14059 subrgintm 14090 islssm 14204 lspsnel6 14255 islidlm 14326 metrest 15063 bdop 15980 bj-nnen2lp 16059 exmidsbthrlem 16133 |
| Copyright terms: Public domain | W3C validator |