![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ssel | GIF version |
Description: Membership relationships follow from a subclass relationship. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
ssel | ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2 3145 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
2 | 1 | biimpi 120 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
3 | 2 | 19.21bi 1558 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
4 | 3 | anim2d 337 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 = 𝐶 ∧ 𝑥 ∈ 𝐴) → (𝑥 = 𝐶 ∧ 𝑥 ∈ 𝐵))) |
5 | 4 | eximdv 1880 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑥(𝑥 = 𝐶 ∧ 𝑥 ∈ 𝐴) → ∃𝑥(𝑥 = 𝐶 ∧ 𝑥 ∈ 𝐵))) |
6 | df-clel 2173 | . 2 ⊢ (𝐶 ∈ 𝐴 ↔ ∃𝑥(𝑥 = 𝐶 ∧ 𝑥 ∈ 𝐴)) | |
7 | df-clel 2173 | . 2 ⊢ (𝐶 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐶 ∧ 𝑥 ∈ 𝐵)) | |
8 | 5, 6, 7 | 3imtr4g 205 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∀wal 1351 = wceq 1353 ∃wex 1492 ∈ wcel 2148 ⊆ wss 3130 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-11 1506 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-in 3136 df-ss 3143 |
This theorem is referenced by: ssel2 3151 sseli 3152 sseld 3155 sstr2 3163 nelss 3217 ssrexf 3218 ssralv 3220 ssrexv 3221 ralss 3222 rexss 3223 ssconb 3269 sscon 3270 ssdif 3271 unss1 3305 ssrin 3361 difin2 3398 reuss2 3416 reupick 3420 sssnm 3755 uniss 3831 ss2iun 3902 ssiun 3929 iinss 3939 disjss2 3984 disjss1 3987 pwnss 4160 sspwb 4217 ssopab2b 4277 soss 4315 sucssel 4425 ssorduni 4487 onintonm 4517 onnmin 4568 ssnel 4569 wessep 4578 ssrel 4715 ssrel2 4717 ssrelrel 4727 xpss12 4734 cnvss 4801 dmss 4827 elreldm 4854 dmcosseq 4899 relssres 4946 iss 4954 resopab2 4955 issref 5012 ssrnres 5072 dfco2a 5130 cores 5133 funssres 5259 fununi 5285 funimaexglem 5300 dfimafn 5565 funimass4 5567 funimass3 5633 dff4im 5663 funfvima2 5750 funfvima3 5751 f1elima 5774 riotass2 5857 ssoprab2b 5932 resoprab2 5972 releldm2 6186 reldmtpos 6254 dmtpos 6257 rdgss 6384 ss2ixp 6711 fiintim 6928 negf1o 8339 lbreu 8902 lbinf 8905 eqreznegel 9614 negm 9615 iccsupr 9966 negfi 11236 sumrbdclem 11385 prodrbdclem 11579 fprodmodd 11649 mulgpropdg 13025 subgintm 13058 subrgintm 13364 metrest 14009 bdop 14630 bj-nnen2lp 14709 exmidsbthrlem 14773 |
Copyright terms: Public domain | W3C validator |