![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ssel | GIF version |
Description: Membership relationships follow from a subclass relationship. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
ssel | ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2 3169 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
2 | 1 | biimpi 120 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
3 | 2 | 19.21bi 1569 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
4 | 3 | anim2d 337 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 = 𝐶 ∧ 𝑥 ∈ 𝐴) → (𝑥 = 𝐶 ∧ 𝑥 ∈ 𝐵))) |
5 | 4 | eximdv 1891 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑥(𝑥 = 𝐶 ∧ 𝑥 ∈ 𝐴) → ∃𝑥(𝑥 = 𝐶 ∧ 𝑥 ∈ 𝐵))) |
6 | df-clel 2189 | . 2 ⊢ (𝐶 ∈ 𝐴 ↔ ∃𝑥(𝑥 = 𝐶 ∧ 𝑥 ∈ 𝐴)) | |
7 | df-clel 2189 | . 2 ⊢ (𝐶 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐶 ∧ 𝑥 ∈ 𝐵)) | |
8 | 5, 6, 7 | 3imtr4g 205 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∀wal 1362 = wceq 1364 ∃wex 1503 ∈ wcel 2164 ⊆ wss 3154 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-in 3160 df-ss 3167 |
This theorem is referenced by: ssel2 3175 sseli 3176 sseld 3179 sstr2 3187 nelss 3241 ssrexf 3242 ssralv 3244 ssrexv 3245 ralss 3246 rexss 3247 ssconb 3293 sscon 3294 ssdif 3295 unss1 3329 ssrin 3385 difin2 3422 reuss2 3440 reupick 3444 sssnm 3781 uniss 3857 ss2iun 3928 ssiun 3955 iinss 3965 disjss2 4010 disjss1 4013 pwnss 4189 sspwb 4246 ssopab2b 4308 soss 4346 sucssel 4456 ssorduni 4520 onintonm 4550 onnmin 4601 ssnel 4602 wessep 4611 ssrel 4748 ssrel2 4750 ssrelrel 4760 xpss12 4767 cnvss 4836 dmss 4862 elreldm 4889 dmcosseq 4934 relssres 4981 iss 4989 resopab2 4990 issref 5049 ssrnres 5109 dfco2a 5167 cores 5170 funssres 5297 fununi 5323 funimaexglem 5338 dfimafn 5606 funimass4 5608 funimass3 5675 dff4im 5705 funfvima2 5792 funfvima3 5793 f1elima 5817 riotass2 5901 ssoprab2b 5976 resoprab2 6016 releldm2 6240 reldmtpos 6308 dmtpos 6311 rdgss 6438 ss2ixp 6767 fiintim 6987 negf1o 8403 lbreu 8966 lbinf 8969 eqreznegel 9682 negm 9683 iccsupr 10035 negfi 11374 sumrbdclem 11523 prodrbdclem 11717 fprodmodd 11787 mulgpropdg 13237 subgintm 13271 subrngintm 13711 subrgintm 13742 islssm 13856 lspsnel6 13907 islidlm 13978 metrest 14685 bdop 15437 bj-nnen2lp 15516 exmidsbthrlem 15582 |
Copyright terms: Public domain | W3C validator |