| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssel | GIF version | ||
| Description: Membership relationships follow from a subclass relationship. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| ssel | ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfss2 3172 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 2 | 1 | biimpi 120 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
| 3 | 2 | 19.21bi 1572 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
| 4 | 3 | anim2d 337 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 = 𝐶 ∧ 𝑥 ∈ 𝐴) → (𝑥 = 𝐶 ∧ 𝑥 ∈ 𝐵))) |
| 5 | 4 | eximdv 1894 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑥(𝑥 = 𝐶 ∧ 𝑥 ∈ 𝐴) → ∃𝑥(𝑥 = 𝐶 ∧ 𝑥 ∈ 𝐵))) |
| 6 | df-clel 2192 | . 2 ⊢ (𝐶 ∈ 𝐴 ↔ ∃𝑥(𝑥 = 𝐶 ∧ 𝑥 ∈ 𝐴)) | |
| 7 | df-clel 2192 | . 2 ⊢ (𝐶 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐶 ∧ 𝑥 ∈ 𝐵)) | |
| 8 | 5, 6, 7 | 3imtr4g 205 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∀wal 1362 = wceq 1364 ∃wex 1506 ∈ wcel 2167 ⊆ wss 3157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: ssel2 3178 sseli 3179 sseld 3182 sstr2 3190 nelss 3244 ssrexf 3245 ssralv 3247 ssrexv 3248 ralss 3249 rexss 3250 ssconb 3296 sscon 3297 ssdif 3298 unss1 3332 ssrin 3388 difin2 3425 reuss2 3443 reupick 3447 sssnm 3784 uniss 3860 ss2iun 3931 ssiun 3958 iinss 3968 disjss2 4013 disjss1 4016 pwnss 4192 sspwb 4249 ssopab2b 4311 soss 4349 sucssel 4459 ssorduni 4523 onintonm 4553 onnmin 4604 ssnel 4605 wessep 4614 ssrel 4751 ssrel2 4753 ssrelrel 4763 xpss12 4770 cnvss 4839 dmss 4865 elreldm 4892 dmcosseq 4937 relssres 4984 iss 4992 resopab2 4993 issref 5052 ssrnres 5112 dfco2a 5170 cores 5173 funssres 5300 fununi 5326 funimaexglem 5341 dfimafn 5609 funimass4 5611 funimass3 5678 dff4im 5708 funfvima2 5795 funfvima3 5796 f1elima 5820 riotass2 5904 ssoprab2b 5979 resoprab2 6019 releldm2 6243 reldmtpos 6311 dmtpos 6314 rdgss 6441 ss2ixp 6770 fiintim 6992 negf1o 8408 lbreu 8972 lbinf 8975 eqreznegel 9688 negm 9689 iccsupr 10041 negfi 11393 sumrbdclem 11542 prodrbdclem 11736 fprodmodd 11806 mulgpropdg 13294 subgintm 13328 subrngintm 13768 subrgintm 13799 islssm 13913 lspsnel6 13964 islidlm 14035 metrest 14742 bdop 15521 bj-nnen2lp 15600 exmidsbthrlem 15666 |
| Copyright terms: Public domain | W3C validator |