| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssel | GIF version | ||
| Description: Membership relationships follow from a subclass relationship. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| ssel | ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssalel 3212 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 2 | 1 | biimpi 120 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
| 3 | 2 | 19.21bi 1604 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
| 4 | 3 | anim2d 337 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 = 𝐶 ∧ 𝑥 ∈ 𝐴) → (𝑥 = 𝐶 ∧ 𝑥 ∈ 𝐵))) |
| 5 | 4 | eximdv 1926 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑥(𝑥 = 𝐶 ∧ 𝑥 ∈ 𝐴) → ∃𝑥(𝑥 = 𝐶 ∧ 𝑥 ∈ 𝐵))) |
| 6 | df-clel 2225 | . 2 ⊢ (𝐶 ∈ 𝐴 ↔ ∃𝑥(𝑥 = 𝐶 ∧ 𝑥 ∈ 𝐴)) | |
| 7 | df-clel 2225 | . 2 ⊢ (𝐶 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐶 ∧ 𝑥 ∈ 𝐵)) | |
| 8 | 5, 6, 7 | 3imtr4g 205 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∀wal 1393 = wceq 1395 ∃wex 1538 ∈ wcel 2200 ⊆ wss 3197 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 |
| This theorem is referenced by: ssel2 3219 sseli 3220 sseld 3223 sstr2 3231 nelss 3285 ssrexf 3286 ssralv 3288 ssrexv 3289 ralss 3290 rexss 3291 ssconb 3337 sscon 3338 ssdif 3339 unss1 3373 ssrin 3429 difin2 3466 reuss2 3484 reupick 3488 sssnm 3831 uniss 3908 ss2iun 3979 ssiun 4006 iinss 4016 disjss2 4061 disjss1 4064 pwnss 4242 sspwb 4301 ssopab2b 4364 soss 4404 sucssel 4514 ssorduni 4578 onintonm 4608 onnmin 4659 ssnel 4660 wessep 4669 ssrel 4806 ssrel2 4808 ssrelrel 4818 xpss12 4825 cnvss 4894 dmss 4921 elreldm 4949 dmcosseq 4995 relssres 5042 iss 5050 resopab2 5051 issref 5110 ssrnres 5170 dfco2a 5228 cores 5231 funssres 5359 fununi 5388 funimaexglem 5403 dfimafn 5681 funimass4 5683 funimass3 5750 dff4im 5780 funfvima2 5871 funfvima3 5872 f1elima 5896 riotass2 5982 ssoprab2b 6060 resoprab2 6100 releldm2 6329 reldmtpos 6397 dmtpos 6400 rdgss 6527 ss2ixp 6856 1ndom2 7022 fiintim 7089 negf1o 8524 lbreu 9088 lbinf 9091 eqreznegel 9805 negm 9806 iccsupr 10158 negfi 11734 sumrbdclem 11883 prodrbdclem 12077 fprodmodd 12147 mulgpropdg 13696 subgintm 13730 subrngintm 14170 subrgintm 14201 islssm 14315 lspsnel6 14366 islidlm 14437 metrest 15174 bdop 16196 bj-nnen2lp 16275 exmidsbthrlem 16349 |
| Copyright terms: Public domain | W3C validator |