![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0nelxp | GIF version |
Description: The empty set is not a member of a cross product. (Contributed by NM, 2-May-1996.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
0nelxp | ⊢ ¬ ∅ ∈ (𝐴 × 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2759 | . . . . . 6 ⊢ 𝑥 ∈ V | |
2 | vex 2759 | . . . . . 6 ⊢ 𝑦 ∈ V | |
3 | 1, 2 | opnzi 4260 | . . . . 5 ⊢ 〈𝑥, 𝑦〉 ≠ ∅ |
4 | simpl 109 | . . . . . . 7 ⊢ ((∅ = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → ∅ = 〈𝑥, 𝑦〉) | |
5 | 4 | eqcomd 2195 | . . . . . 6 ⊢ ((∅ = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 〈𝑥, 𝑦〉 = ∅) |
6 | 5 | necon3ai 2409 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ≠ ∅ → ¬ (∅ = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) |
7 | 3, 6 | ax-mp 5 | . . . 4 ⊢ ¬ (∅ = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
8 | 7 | nex 1511 | . . 3 ⊢ ¬ ∃𝑦(∅ = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
9 | 8 | nex 1511 | . 2 ⊢ ¬ ∃𝑥∃𝑦(∅ = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
10 | elxp 4668 | . 2 ⊢ (∅ ∈ (𝐴 × 𝐵) ↔ ∃𝑥∃𝑦(∅ = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) | |
11 | 9, 10 | mtbir 672 | 1 ⊢ ¬ ∅ ∈ (𝐴 × 𝐵) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 104 = wceq 1364 ∃wex 1503 ∈ wcel 2160 ≠ wne 2360 ∅c0 3442 〈cop 3617 × cxp 4649 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2163 ax-ext 2171 ax-sep 4143 ax-pow 4199 ax-pr 4234 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-v 2758 df-dif 3151 df-un 3153 df-in 3155 df-ss 3162 df-nul 3443 df-pw 3599 df-sn 3620 df-pr 3621 df-op 3623 df-opab 4087 df-xp 4657 |
This theorem is referenced by: 0nelrel 4697 dmsn0 5121 nfunv 5275 reldmtpos 6293 dmtpos 6296 0ncn 7877 structcnvcnv 12608 |
Copyright terms: Public domain | W3C validator |