![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0nelxp | GIF version |
Description: The empty set is not a member of a cross product. (Contributed by NM, 2-May-1996.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
0nelxp | ⊢ ¬ ∅ ∈ (𝐴 × 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2644 | . . . . . 6 ⊢ 𝑥 ∈ V | |
2 | vex 2644 | . . . . . 6 ⊢ 𝑦 ∈ V | |
3 | 1, 2 | opnzi 4095 | . . . . 5 ⊢ 〈𝑥, 𝑦〉 ≠ ∅ |
4 | simpl 108 | . . . . . . 7 ⊢ ((∅ = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → ∅ = 〈𝑥, 𝑦〉) | |
5 | 4 | eqcomd 2105 | . . . . . 6 ⊢ ((∅ = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 〈𝑥, 𝑦〉 = ∅) |
6 | 5 | necon3ai 2316 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ≠ ∅ → ¬ (∅ = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) |
7 | 3, 6 | ax-mp 7 | . . . 4 ⊢ ¬ (∅ = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
8 | 7 | nex 1444 | . . 3 ⊢ ¬ ∃𝑦(∅ = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
9 | 8 | nex 1444 | . 2 ⊢ ¬ ∃𝑥∃𝑦(∅ = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
10 | elxp 4494 | . 2 ⊢ (∅ ∈ (𝐴 × 𝐵) ↔ ∃𝑥∃𝑦(∅ = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) | |
11 | 9, 10 | mtbir 637 | 1 ⊢ ¬ ∅ ∈ (𝐴 × 𝐵) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 103 = wceq 1299 ∃wex 1436 ∈ wcel 1448 ≠ wne 2267 ∅c0 3310 〈cop 3477 × cxp 4475 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 584 ax-in2 585 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-14 1460 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-sep 3986 ax-pow 4038 ax-pr 4069 |
This theorem depends on definitions: df-bi 116 df-3an 932 df-tru 1302 df-fal 1305 df-nf 1405 df-sb 1704 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ne 2268 df-v 2643 df-dif 3023 df-un 3025 df-in 3027 df-ss 3034 df-nul 3311 df-pw 3459 df-sn 3480 df-pr 3481 df-op 3483 df-opab 3930 df-xp 4483 |
This theorem is referenced by: 0nelrel 4523 dmsn0 4942 nfunv 5092 reldmtpos 6080 dmtpos 6083 0ncn 7519 structcnvcnv 11757 |
Copyright terms: Public domain | W3C validator |