| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0nelxp | GIF version | ||
| Description: The empty set is not a member of a cross product. (Contributed by NM, 2-May-1996.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| 0nelxp | ⊢ ¬ ∅ ∈ (𝐴 × 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2774 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 2 | vex 2774 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 3 | 1, 2 | opnzi 4278 | . . . . 5 ⊢ 〈𝑥, 𝑦〉 ≠ ∅ |
| 4 | simpl 109 | . . . . . . 7 ⊢ ((∅ = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → ∅ = 〈𝑥, 𝑦〉) | |
| 5 | 4 | eqcomd 2210 | . . . . . 6 ⊢ ((∅ = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 〈𝑥, 𝑦〉 = ∅) |
| 6 | 5 | necon3ai 2424 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ≠ ∅ → ¬ (∅ = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) |
| 7 | 3, 6 | ax-mp 5 | . . . 4 ⊢ ¬ (∅ = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
| 8 | 7 | nex 1522 | . . 3 ⊢ ¬ ∃𝑦(∅ = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
| 9 | 8 | nex 1522 | . 2 ⊢ ¬ ∃𝑥∃𝑦(∅ = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
| 10 | elxp 4690 | . 2 ⊢ (∅ ∈ (𝐴 × 𝐵) ↔ ∃𝑥∃𝑦(∅ = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) | |
| 11 | 9, 10 | mtbir 672 | 1 ⊢ ¬ ∅ ∈ (𝐴 × 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∧ wa 104 = wceq 1372 ∃wex 1514 ∈ wcel 2175 ≠ wne 2375 ∅c0 3459 〈cop 3635 × cxp 4671 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-opab 4105 df-xp 4679 |
| This theorem is referenced by: 0nelrel 4719 dmsn0 5147 nfunv 5301 reldmtpos 6329 dmtpos 6332 0ncn 7926 structcnvcnv 12767 |
| Copyright terms: Public domain | W3C validator |