ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0nelxp GIF version

Theorem 0nelxp 4701
Description: The empty set is not a member of a cross product. (Contributed by NM, 2-May-1996.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
0nelxp ¬ ∅ ∈ (𝐴 × 𝐵)

Proof of Theorem 0nelxp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2774 . . . . . 6 𝑥 ∈ V
2 vex 2774 . . . . . 6 𝑦 ∈ V
31, 2opnzi 4278 . . . . 5 𝑥, 𝑦⟩ ≠ ∅
4 simpl 109 . . . . . . 7 ((∅ = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)) → ∅ = ⟨𝑥, 𝑦⟩)
54eqcomd 2210 . . . . . 6 ((∅ = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)) → ⟨𝑥, 𝑦⟩ = ∅)
65necon3ai 2424 . . . . 5 (⟨𝑥, 𝑦⟩ ≠ ∅ → ¬ (∅ = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)))
73, 6ax-mp 5 . . . 4 ¬ (∅ = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵))
87nex 1522 . . 3 ¬ ∃𝑦(∅ = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵))
98nex 1522 . 2 ¬ ∃𝑥𝑦(∅ = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵))
10 elxp 4690 . 2 (∅ ∈ (𝐴 × 𝐵) ↔ ∃𝑥𝑦(∅ = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)))
119, 10mtbir 672 1 ¬ ∅ ∈ (𝐴 × 𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104   = wceq 1372  wex 1514  wcel 2175  wne 2375  c0 3459  cop 3635   × cxp 4671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-v 2773  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-opab 4105  df-xp 4679
This theorem is referenced by:  0nelrel  4719  dmsn0  5147  nfunv  5301  reldmtpos  6329  dmtpos  6332  0ncn  7926  structcnvcnv  12767
  Copyright terms: Public domain W3C validator