| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0nelxp | GIF version | ||
| Description: The empty set is not a member of a cross product. (Contributed by NM, 2-May-1996.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| 0nelxp | ⊢ ¬ ∅ ∈ (𝐴 × 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2776 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 2 | vex 2776 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 3 | 1, 2 | opnzi 4287 | . . . . 5 ⊢ 〈𝑥, 𝑦〉 ≠ ∅ |
| 4 | simpl 109 | . . . . . . 7 ⊢ ((∅ = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → ∅ = 〈𝑥, 𝑦〉) | |
| 5 | 4 | eqcomd 2212 | . . . . . 6 ⊢ ((∅ = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 〈𝑥, 𝑦〉 = ∅) |
| 6 | 5 | necon3ai 2426 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ≠ ∅ → ¬ (∅ = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) |
| 7 | 3, 6 | ax-mp 5 | . . . 4 ⊢ ¬ (∅ = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
| 8 | 7 | nex 1524 | . . 3 ⊢ ¬ ∃𝑦(∅ = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
| 9 | 8 | nex 1524 | . 2 ⊢ ¬ ∃𝑥∃𝑦(∅ = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
| 10 | elxp 4700 | . 2 ⊢ (∅ ∈ (𝐴 × 𝐵) ↔ ∃𝑥∃𝑦(∅ = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) | |
| 11 | 9, 10 | mtbir 673 | 1 ⊢ ¬ ∅ ∈ (𝐴 × 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∧ wa 104 = wceq 1373 ∃wex 1516 ∈ wcel 2177 ≠ wne 2377 ∅c0 3464 〈cop 3641 × cxp 4681 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-opab 4114 df-xp 4689 |
| This theorem is referenced by: 0nelrel 4729 dmsn0 5159 nfunv 5313 reldmtpos 6352 dmtpos 6355 0ncn 7964 structcnvcnv 12923 vtxval0 15725 iedgval0 15726 |
| Copyright terms: Public domain | W3C validator |