![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dm0 | GIF version |
Description: The domain of the empty set is empty. Part of Theorem 3.8(v) of [Monk1] p. 36. (Contributed by NM, 4-Jul-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
dm0 | ⊢ dom ∅ = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eq0 3465 | . 2 ⊢ (dom ∅ = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ dom ∅) | |
2 | noel 3450 | . . . 4 ⊢ ¬ 〈𝑥, 𝑦〉 ∈ ∅ | |
3 | 2 | nex 1511 | . . 3 ⊢ ¬ ∃𝑦〈𝑥, 𝑦〉 ∈ ∅ |
4 | vex 2763 | . . . 4 ⊢ 𝑥 ∈ V | |
5 | 4 | eldm2 4860 | . . 3 ⊢ (𝑥 ∈ dom ∅ ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ ∅) |
6 | 3, 5 | mtbir 672 | . 2 ⊢ ¬ 𝑥 ∈ dom ∅ |
7 | 1, 6 | mpgbir 1464 | 1 ⊢ dom ∅ = ∅ |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 = wceq 1364 ∃wex 1503 ∈ wcel 2164 ∅c0 3446 〈cop 3621 dom cdm 4659 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-dif 3155 df-un 3157 df-nul 3447 df-sn 3624 df-pr 3625 df-op 3627 df-br 4030 df-dm 4669 |
This theorem is referenced by: rn0 4918 sqxpeq0 5089 fn0 5373 f0dom0 5447 f1o00 5535 rdg0 6440 frec0g 6450 ennnfonelemj0 12558 ennnfonelem1 12564 ennnfonelemkh 12569 ennnfonelemhf1o 12570 |
Copyright terms: Public domain | W3C validator |