ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dm0 GIF version

Theorem dm0 4934
Description: The domain of the empty set is empty. Part of Theorem 3.8(v) of [Monk1] p. 36. (Contributed by NM, 4-Jul-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
dm0 dom ∅ = ∅

Proof of Theorem dm0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eq0 3510 . 2 (dom ∅ = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ dom ∅)
2 noel 3495 . . . 4 ¬ ⟨𝑥, 𝑦⟩ ∈ ∅
32nex 1546 . . 3 ¬ ∃𝑦𝑥, 𝑦⟩ ∈ ∅
4 vex 2802 . . . 4 𝑥 ∈ V
54eldm2 4918 . . 3 (𝑥 ∈ dom ∅ ↔ ∃𝑦𝑥, 𝑦⟩ ∈ ∅)
63, 5mtbir 675 . 2 ¬ 𝑥 ∈ dom ∅
71, 6mpgbir 1499 1 dom ∅ = ∅
Colors of variables: wff set class
Syntax hints:  ¬ wn 3   = wceq 1395  wex 1538  wcel 2200  c0 3491  cop 3669  dom cdm 4716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-dif 3199  df-un 3201  df-nul 3492  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-dm 4726
This theorem is referenced by:  rn0  4976  sqxpeq0  5148  fn0  5439  f0dom0  5515  f10d  5603  f1o00  5604  rdg0  6523  frec0g  6533  swrd0g  11178  ennnfonelemj0  12958  ennnfonelem1  12964  ennnfonelemkh  12969  ennnfonelemhf1o  12970  uhgr0e  15867  uhgr0  15870
  Copyright terms: Public domain W3C validator