ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dm0 GIF version

Theorem dm0 4818
Description: The domain of the empty set is empty. Part of Theorem 3.8(v) of [Monk1] p. 36. (Contributed by NM, 4-Jul-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
dm0 dom ∅ = ∅

Proof of Theorem dm0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eq0 3427 . 2 (dom ∅ = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ dom ∅)
2 noel 3413 . . . 4 ¬ ⟨𝑥, 𝑦⟩ ∈ ∅
32nex 1488 . . 3 ¬ ∃𝑦𝑥, 𝑦⟩ ∈ ∅
4 vex 2729 . . . 4 𝑥 ∈ V
54eldm2 4802 . . 3 (𝑥 ∈ dom ∅ ↔ ∃𝑦𝑥, 𝑦⟩ ∈ ∅)
63, 5mtbir 661 . 2 ¬ 𝑥 ∈ dom ∅
71, 6mpgbir 1441 1 dom ∅ = ∅
Colors of variables: wff set class
Syntax hints:  ¬ wn 3   = wceq 1343  wex 1480  wcel 2136  c0 3409  cop 3579  dom cdm 4604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-dif 3118  df-un 3120  df-nul 3410  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-dm 4614
This theorem is referenced by:  rn0  4860  sqxpeq0  5027  fn0  5307  f0dom0  5381  f1o00  5467  rdg0  6355  frec0g  6365  ennnfonelemj0  12334  ennnfonelem1  12340  ennnfonelemkh  12345  ennnfonelemhf1o  12346
  Copyright terms: Public domain W3C validator