| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dm0 | GIF version | ||
| Description: The domain of the empty set is empty. Part of Theorem 3.8(v) of [Monk1] p. 36. (Contributed by NM, 4-Jul-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| dm0 | ⊢ dom ∅ = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eq0 3510 | . 2 ⊢ (dom ∅ = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ dom ∅) | |
| 2 | noel 3495 | . . . 4 ⊢ ¬ 〈𝑥, 𝑦〉 ∈ ∅ | |
| 3 | 2 | nex 1546 | . . 3 ⊢ ¬ ∃𝑦〈𝑥, 𝑦〉 ∈ ∅ |
| 4 | vex 2802 | . . . 4 ⊢ 𝑥 ∈ V | |
| 5 | 4 | eldm2 4918 | . . 3 ⊢ (𝑥 ∈ dom ∅ ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ ∅) |
| 6 | 3, 5 | mtbir 675 | . 2 ⊢ ¬ 𝑥 ∈ dom ∅ |
| 7 | 1, 6 | mpgbir 1499 | 1 ⊢ dom ∅ = ∅ |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 = wceq 1395 ∃wex 1538 ∈ wcel 2200 ∅c0 3491 〈cop 3669 dom cdm 4716 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-dif 3199 df-un 3201 df-nul 3492 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-dm 4726 |
| This theorem is referenced by: rn0 4976 sqxpeq0 5148 fn0 5439 f0dom0 5515 f10d 5603 f1o00 5604 rdg0 6523 frec0g 6533 swrd0g 11178 ennnfonelemj0 12958 ennnfonelem1 12964 ennnfonelemkh 12969 ennnfonelemhf1o 12970 uhgr0e 15867 uhgr0 15870 |
| Copyright terms: Public domain | W3C validator |