ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dm0 GIF version

Theorem dm0 4843
Description: The domain of the empty set is empty. Part of Theorem 3.8(v) of [Monk1] p. 36. (Contributed by NM, 4-Jul-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
dm0 dom ∅ = ∅

Proof of Theorem dm0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eq0 3443 . 2 (dom ∅ = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ dom ∅)
2 noel 3428 . . . 4 ¬ ⟨𝑥, 𝑦⟩ ∈ ∅
32nex 1500 . . 3 ¬ ∃𝑦𝑥, 𝑦⟩ ∈ ∅
4 vex 2742 . . . 4 𝑥 ∈ V
54eldm2 4827 . . 3 (𝑥 ∈ dom ∅ ↔ ∃𝑦𝑥, 𝑦⟩ ∈ ∅)
63, 5mtbir 671 . 2 ¬ 𝑥 ∈ dom ∅
71, 6mpgbir 1453 1 dom ∅ = ∅
Colors of variables: wff set class
Syntax hints:  ¬ wn 3   = wceq 1353  wex 1492  wcel 2148  c0 3424  cop 3597  dom cdm 4628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-dif 3133  df-un 3135  df-nul 3425  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-dm 4638
This theorem is referenced by:  rn0  4885  sqxpeq0  5054  fn0  5337  f0dom0  5411  f1o00  5498  rdg0  6390  frec0g  6400  ennnfonelemj0  12404  ennnfonelem1  12410  ennnfonelemkh  12415  ennnfonelemhf1o  12416
  Copyright terms: Public domain W3C validator