| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dm0 | GIF version | ||
| Description: The domain of the empty set is empty. Part of Theorem 3.8(v) of [Monk1] p. 36. (Contributed by NM, 4-Jul-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| dm0 | ⊢ dom ∅ = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eq0 3481 | . 2 ⊢ (dom ∅ = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ dom ∅) | |
| 2 | noel 3466 | . . . 4 ⊢ ¬ 〈𝑥, 𝑦〉 ∈ ∅ | |
| 3 | 2 | nex 1524 | . . 3 ⊢ ¬ ∃𝑦〈𝑥, 𝑦〉 ∈ ∅ |
| 4 | vex 2776 | . . . 4 ⊢ 𝑥 ∈ V | |
| 5 | 4 | eldm2 4882 | . . 3 ⊢ (𝑥 ∈ dom ∅ ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ ∅) |
| 6 | 3, 5 | mtbir 673 | . 2 ⊢ ¬ 𝑥 ∈ dom ∅ |
| 7 | 1, 6 | mpgbir 1477 | 1 ⊢ dom ∅ = ∅ |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 = wceq 1373 ∃wex 1516 ∈ wcel 2177 ∅c0 3462 〈cop 3638 dom cdm 4680 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-dif 3170 df-un 3172 df-nul 3463 df-sn 3641 df-pr 3642 df-op 3644 df-br 4049 df-dm 4690 |
| This theorem is referenced by: rn0 4940 sqxpeq0 5112 fn0 5402 f0dom0 5478 f10d 5566 f1o00 5567 rdg0 6483 frec0g 6493 swrd0g 11127 ennnfonelemj0 12822 ennnfonelem1 12828 ennnfonelemkh 12833 ennnfonelemhf1o 12834 uhgr0e 15728 uhgr0 15731 |
| Copyright terms: Public domain | W3C validator |