ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dm0 GIF version

Theorem dm0 4825
Description: The domain of the empty set is empty. Part of Theorem 3.8(v) of [Monk1] p. 36. (Contributed by NM, 4-Jul-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
dm0 dom ∅ = ∅

Proof of Theorem dm0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eq0 3433 . 2 (dom ∅ = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ dom ∅)
2 noel 3418 . . . 4 ¬ ⟨𝑥, 𝑦⟩ ∈ ∅
32nex 1493 . . 3 ¬ ∃𝑦𝑥, 𝑦⟩ ∈ ∅
4 vex 2733 . . . 4 𝑥 ∈ V
54eldm2 4809 . . 3 (𝑥 ∈ dom ∅ ↔ ∃𝑦𝑥, 𝑦⟩ ∈ ∅)
63, 5mtbir 666 . 2 ¬ 𝑥 ∈ dom ∅
71, 6mpgbir 1446 1 dom ∅ = ∅
Colors of variables: wff set class
Syntax hints:  ¬ wn 3   = wceq 1348  wex 1485  wcel 2141  c0 3414  cop 3586  dom cdm 4611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-dif 3123  df-un 3125  df-nul 3415  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-dm 4621
This theorem is referenced by:  rn0  4867  sqxpeq0  5034  fn0  5317  f0dom0  5391  f1o00  5477  rdg0  6366  frec0g  6376  ennnfonelemj0  12356  ennnfonelem1  12362  ennnfonelemkh  12367  ennnfonelemhf1o  12368
  Copyright terms: Public domain W3C validator