ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dm0 GIF version

Theorem dm0 4880
Description: The domain of the empty set is empty. Part of Theorem 3.8(v) of [Monk1] p. 36. (Contributed by NM, 4-Jul-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
dm0 dom ∅ = ∅

Proof of Theorem dm0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eq0 3469 . 2 (dom ∅ = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ dom ∅)
2 noel 3454 . . . 4 ¬ ⟨𝑥, 𝑦⟩ ∈ ∅
32nex 1514 . . 3 ¬ ∃𝑦𝑥, 𝑦⟩ ∈ ∅
4 vex 2766 . . . 4 𝑥 ∈ V
54eldm2 4864 . . 3 (𝑥 ∈ dom ∅ ↔ ∃𝑦𝑥, 𝑦⟩ ∈ ∅)
63, 5mtbir 672 . 2 ¬ 𝑥 ∈ dom ∅
71, 6mpgbir 1467 1 dom ∅ = ∅
Colors of variables: wff set class
Syntax hints:  ¬ wn 3   = wceq 1364  wex 1506  wcel 2167  c0 3450  cop 3625  dom cdm 4663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-dif 3159  df-un 3161  df-nul 3451  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-dm 4673
This theorem is referenced by:  rn0  4922  sqxpeq0  5093  fn0  5377  f0dom0  5451  f1o00  5539  rdg0  6445  frec0g  6455  ennnfonelemj0  12618  ennnfonelem1  12624  ennnfonelemkh  12629  ennnfonelemhf1o  12630
  Copyright terms: Public domain W3C validator