Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dm0 | GIF version |
Description: The domain of the empty set is empty. Part of Theorem 3.8(v) of [Monk1] p. 36. (Contributed by NM, 4-Jul-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
dm0 | ⊢ dom ∅ = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eq0 3427 | . 2 ⊢ (dom ∅ = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ dom ∅) | |
2 | noel 3413 | . . . 4 ⊢ ¬ 〈𝑥, 𝑦〉 ∈ ∅ | |
3 | 2 | nex 1488 | . . 3 ⊢ ¬ ∃𝑦〈𝑥, 𝑦〉 ∈ ∅ |
4 | vex 2729 | . . . 4 ⊢ 𝑥 ∈ V | |
5 | 4 | eldm2 4802 | . . 3 ⊢ (𝑥 ∈ dom ∅ ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ ∅) |
6 | 3, 5 | mtbir 661 | . 2 ⊢ ¬ 𝑥 ∈ dom ∅ |
7 | 1, 6 | mpgbir 1441 | 1 ⊢ dom ∅ = ∅ |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 = wceq 1343 ∃wex 1480 ∈ wcel 2136 ∅c0 3409 〈cop 3579 dom cdm 4604 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-dif 3118 df-un 3120 df-nul 3410 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-dm 4614 |
This theorem is referenced by: rn0 4860 sqxpeq0 5027 fn0 5307 f0dom0 5381 f1o00 5467 rdg0 6355 frec0g 6365 ennnfonelemj0 12334 ennnfonelem1 12340 ennnfonelemkh 12345 ennnfonelemhf1o 12346 |
Copyright terms: Public domain | W3C validator |