ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dm0 GIF version

Theorem dm0 4898
Description: The domain of the empty set is empty. Part of Theorem 3.8(v) of [Monk1] p. 36. (Contributed by NM, 4-Jul-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
dm0 dom ∅ = ∅

Proof of Theorem dm0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eq0 3481 . 2 (dom ∅ = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ dom ∅)
2 noel 3466 . . . 4 ¬ ⟨𝑥, 𝑦⟩ ∈ ∅
32nex 1524 . . 3 ¬ ∃𝑦𝑥, 𝑦⟩ ∈ ∅
4 vex 2776 . . . 4 𝑥 ∈ V
54eldm2 4882 . . 3 (𝑥 ∈ dom ∅ ↔ ∃𝑦𝑥, 𝑦⟩ ∈ ∅)
63, 5mtbir 673 . 2 ¬ 𝑥 ∈ dom ∅
71, 6mpgbir 1477 1 dom ∅ = ∅
Colors of variables: wff set class
Syntax hints:  ¬ wn 3   = wceq 1373  wex 1516  wcel 2177  c0 3462  cop 3638  dom cdm 4680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-dif 3170  df-un 3172  df-nul 3463  df-sn 3641  df-pr 3642  df-op 3644  df-br 4049  df-dm 4690
This theorem is referenced by:  rn0  4940  sqxpeq0  5112  fn0  5402  f0dom0  5478  f10d  5566  f1o00  5567  rdg0  6483  frec0g  6493  swrd0g  11127  ennnfonelemj0  12822  ennnfonelem1  12828  ennnfonelemkh  12833  ennnfonelemhf1o  12834  uhgr0e  15728  uhgr0  15731
  Copyright terms: Public domain W3C validator