ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpo0 GIF version

Theorem mpo0 5912
Description: A mapping operation with empty domain. (Contributed by Stefan O'Rear, 29-Jan-2015.) (Revised by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
mpo0 (𝑥 ∈ ∅, 𝑦𝐵𝐶) = ∅

Proof of Theorem mpo0
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mpo 5847 . 2 (𝑥 ∈ ∅, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ∅ ∧ 𝑦𝐵) ∧ 𝑧 = 𝐶)}
2 df-oprab 5846 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ∅ ∧ 𝑦𝐵) ∧ 𝑧 = 𝐶)} = {𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ ((𝑥 ∈ ∅ ∧ 𝑦𝐵) ∧ 𝑧 = 𝐶))}
3 noel 3413 . . . . . . 7 ¬ 𝑥 ∈ ∅
4 simprll 527 . . . . . . 7 ((𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ ((𝑥 ∈ ∅ ∧ 𝑦𝐵) ∧ 𝑧 = 𝐶)) → 𝑥 ∈ ∅)
53, 4mto 652 . . . . . 6 ¬ (𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ ((𝑥 ∈ ∅ ∧ 𝑦𝐵) ∧ 𝑧 = 𝐶))
65nex 1488 . . . . 5 ¬ ∃𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ ((𝑥 ∈ ∅ ∧ 𝑦𝐵) ∧ 𝑧 = 𝐶))
76nex 1488 . . . 4 ¬ ∃𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ ((𝑥 ∈ ∅ ∧ 𝑦𝐵) ∧ 𝑧 = 𝐶))
87nex 1488 . . 3 ¬ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ ((𝑥 ∈ ∅ ∧ 𝑦𝐵) ∧ 𝑧 = 𝐶))
98abf 3452 . 2 {𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ ((𝑥 ∈ ∅ ∧ 𝑦𝐵) ∧ 𝑧 = 𝐶))} = ∅
101, 2, 93eqtri 2190 1 (𝑥 ∈ ∅, 𝑦𝐵𝐶) = ∅
Colors of variables: wff set class
Syntax hints:  wa 103   = wceq 1343  wex 1480  wcel 2136  {cab 2151  c0 3409  cop 3579  {coprab 5843  cmpo 5844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-dif 3118  df-in 3122  df-ss 3129  df-nul 3410  df-oprab 5846  df-mpo 5847
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator