Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 0xp | GIF version |
Description: The cross product with the empty set is empty. Part of Theorem 3.13(ii) of [Monk1] p. 37. (Contributed by NM, 4-Jul-1994.) |
Ref | Expression |
---|---|
0xp | ⊢ (∅ × 𝐴) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxp 4603 | . . 3 ⊢ (𝑧 ∈ (∅ × 𝐴) ↔ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐴))) | |
2 | noel 3398 | . . . . . . 7 ⊢ ¬ 𝑥 ∈ ∅ | |
3 | simprl 521 | . . . . . . 7 ⊢ ((𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐴)) → 𝑥 ∈ ∅) | |
4 | 2, 3 | mto 652 | . . . . . 6 ⊢ ¬ (𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐴)) |
5 | 4 | nex 1480 | . . . . 5 ⊢ ¬ ∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐴)) |
6 | 5 | nex 1480 | . . . 4 ⊢ ¬ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐴)) |
7 | noel 3398 | . . . 4 ⊢ ¬ 𝑧 ∈ ∅ | |
8 | 6, 7 | 2false 691 | . . 3 ⊢ (∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐴)) ↔ 𝑧 ∈ ∅) |
9 | 1, 8 | bitri 183 | . 2 ⊢ (𝑧 ∈ (∅ × 𝐴) ↔ 𝑧 ∈ ∅) |
10 | 9 | eqriv 2154 | 1 ⊢ (∅ × 𝐴) = ∅ |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 = wceq 1335 ∃wex 1472 ∈ wcel 2128 ∅c0 3394 〈cop 3563 × cxp 4584 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-v 2714 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-opab 4026 df-xp 4592 |
This theorem is referenced by: res0 4870 xp0 5005 xpeq0r 5008 xpdisj1 5010 xpima1 5032 xpfi 6874 exmidfodomrlemim 7136 hashxp 10700 |
Copyright terms: Public domain | W3C validator |