ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0xp GIF version

Theorem 0xp 4799
Description: The cross product with the empty set is empty. Part of Theorem 3.13(ii) of [Monk1] p. 37. (Contributed by NM, 4-Jul-1994.)
Assertion
Ref Expression
0xp (∅ × 𝐴) = ∅

Proof of Theorem 0xp
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxp 4736 . . 3 (𝑧 ∈ (∅ × 𝐴) ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ ∅ ∧ 𝑦𝐴)))
2 noel 3495 . . . . . . 7 ¬ 𝑥 ∈ ∅
3 simprl 529 . . . . . . 7 ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ ∅ ∧ 𝑦𝐴)) → 𝑥 ∈ ∅)
42, 3mto 666 . . . . . 6 ¬ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ ∅ ∧ 𝑦𝐴))
54nex 1546 . . . . 5 ¬ ∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ ∅ ∧ 𝑦𝐴))
65nex 1546 . . . 4 ¬ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ ∅ ∧ 𝑦𝐴))
7 noel 3495 . . . 4 ¬ 𝑧 ∈ ∅
86, 72false 706 . . 3 (∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ ∅ ∧ 𝑦𝐴)) ↔ 𝑧 ∈ ∅)
91, 8bitri 184 . 2 (𝑧 ∈ (∅ × 𝐴) ↔ 𝑧 ∈ ∅)
109eqriv 2226 1 (∅ × 𝐴) = ∅
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1395  wex 1538  wcel 2200  c0 3491  cop 3669   × cxp 4717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-opab 4146  df-xp 4725
This theorem is referenced by:  res0  5009  xp0  5148  xpeq0r  5151  xpdisj1  5153  xpima1  5175  xpfi  7102  exmidfodomrlemim  7387  hashxp  11056
  Copyright terms: Public domain W3C validator