ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0xp GIF version

Theorem 0xp 4740
Description: The cross product with the empty set is empty. Part of Theorem 3.13(ii) of [Monk1] p. 37. (Contributed by NM, 4-Jul-1994.)
Assertion
Ref Expression
0xp (∅ × 𝐴) = ∅

Proof of Theorem 0xp
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxp 4677 . . 3 (𝑧 ∈ (∅ × 𝐴) ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ ∅ ∧ 𝑦𝐴)))
2 noel 3451 . . . . . . 7 ¬ 𝑥 ∈ ∅
3 simprl 529 . . . . . . 7 ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ ∅ ∧ 𝑦𝐴)) → 𝑥 ∈ ∅)
42, 3mto 663 . . . . . 6 ¬ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ ∅ ∧ 𝑦𝐴))
54nex 1511 . . . . 5 ¬ ∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ ∅ ∧ 𝑦𝐴))
65nex 1511 . . . 4 ¬ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ ∅ ∧ 𝑦𝐴))
7 noel 3451 . . . 4 ¬ 𝑧 ∈ ∅
86, 72false 702 . . 3 (∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ ∅ ∧ 𝑦𝐴)) ↔ 𝑧 ∈ ∅)
91, 8bitri 184 . 2 (𝑧 ∈ (∅ × 𝐴) ↔ 𝑧 ∈ ∅)
109eqriv 2190 1 (∅ × 𝐴) = ∅
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1364  wex 1503  wcel 2164  c0 3447  cop 3622   × cxp 4658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-opab 4092  df-xp 4666
This theorem is referenced by:  res0  4947  xp0  5086  xpeq0r  5089  xpdisj1  5091  xpima1  5113  xpfi  6988  exmidfodomrlemim  7263  hashxp  10900
  Copyright terms: Public domain W3C validator