![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0xp | GIF version |
Description: The cross product with the empty set is empty. Part of Theorem 3.13(ii) of [Monk1] p. 37. (Contributed by NM, 4-Jul-1994.) |
Ref | Expression |
---|---|
0xp | ⊢ (∅ × 𝐴) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxp 4642 | . . 3 ⊢ (𝑧 ∈ (∅ × 𝐴) ↔ ∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐴))) | |
2 | noel 3426 | . . . . . . 7 ⊢ ¬ 𝑥 ∈ ∅ | |
3 | simprl 529 | . . . . . . 7 ⊢ ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐴)) → 𝑥 ∈ ∅) | |
4 | 2, 3 | mto 662 | . . . . . 6 ⊢ ¬ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐴)) |
5 | 4 | nex 1500 | . . . . 5 ⊢ ¬ ∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐴)) |
6 | 5 | nex 1500 | . . . 4 ⊢ ¬ ∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐴)) |
7 | noel 3426 | . . . 4 ⊢ ¬ 𝑧 ∈ ∅ | |
8 | 6, 7 | 2false 701 | . . 3 ⊢ (∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐴)) ↔ 𝑧 ∈ ∅) |
9 | 1, 8 | bitri 184 | . 2 ⊢ (𝑧 ∈ (∅ × 𝐴) ↔ 𝑧 ∈ ∅) |
10 | 9 | eqriv 2174 | 1 ⊢ (∅ × 𝐴) = ∅ |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1353 ∃wex 1492 ∈ wcel 2148 ∅c0 3422 ⟨cop 3595 × cxp 4623 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4120 ax-pow 4173 ax-pr 4208 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2739 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-nul 3423 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-opab 4064 df-xp 4631 |
This theorem is referenced by: res0 4910 xp0 5047 xpeq0r 5050 xpdisj1 5052 xpima1 5074 xpfi 6926 exmidfodomrlemim 7197 hashxp 10799 |
Copyright terms: Public domain | W3C validator |