| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0xp | GIF version | ||
| Description: The cross product with the empty set is empty. Part of Theorem 3.13(ii) of [Monk1] p. 37. (Contributed by NM, 4-Jul-1994.) |
| Ref | Expression |
|---|---|
| 0xp | ⊢ (∅ × 𝐴) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxp 4713 | . . 3 ⊢ (𝑧 ∈ (∅ × 𝐴) ↔ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐴))) | |
| 2 | noel 3475 | . . . . . . 7 ⊢ ¬ 𝑥 ∈ ∅ | |
| 3 | simprl 529 | . . . . . . 7 ⊢ ((𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐴)) → 𝑥 ∈ ∅) | |
| 4 | 2, 3 | mto 666 | . . . . . 6 ⊢ ¬ (𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐴)) |
| 5 | 4 | nex 1526 | . . . . 5 ⊢ ¬ ∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐴)) |
| 6 | 5 | nex 1526 | . . . 4 ⊢ ¬ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐴)) |
| 7 | noel 3475 | . . . 4 ⊢ ¬ 𝑧 ∈ ∅ | |
| 8 | 6, 7 | 2false 705 | . . 3 ⊢ (∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐴)) ↔ 𝑧 ∈ ∅) |
| 9 | 1, 8 | bitri 184 | . 2 ⊢ (𝑧 ∈ (∅ × 𝐴) ↔ 𝑧 ∈ ∅) |
| 10 | 9 | eqriv 2206 | 1 ⊢ (∅ × 𝐴) = ∅ |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1375 ∃wex 1518 ∈ wcel 2180 ∅c0 3471 〈cop 3649 × cxp 4694 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-v 2781 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-opab 4125 df-xp 4702 |
| This theorem is referenced by: res0 4985 xp0 5124 xpeq0r 5127 xpdisj1 5129 xpima1 5151 xpfi 7062 exmidfodomrlemim 7347 hashxp 11015 |
| Copyright terms: Public domain | W3C validator |