ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0fv GIF version

Theorem 0fv 5664
Description: Function value of the empty set. (Contributed by Stefan O'Rear, 26-Nov-2014.)
Assertion
Ref Expression
0fv (∅‘𝐴) = ∅

Proof of Theorem 0fv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-fv 5325 . 2 (∅‘𝐴) = (℩𝑥𝐴𝑥)
2 noel 3495 . . . . . 6 ¬ ⟨𝐴, 𝑥⟩ ∈ ∅
3 df-br 4083 . . . . . 6 (𝐴𝑥 ↔ ⟨𝐴, 𝑥⟩ ∈ ∅)
42, 3mtbir 675 . . . . 5 ¬ 𝐴𝑥
54nex 1546 . . . 4 ¬ ∃𝑥 𝐴𝑥
6 euex 2107 . . . 4 (∃!𝑥 𝐴𝑥 → ∃𝑥 𝐴𝑥)
75, 6mto 666 . . 3 ¬ ∃!𝑥 𝐴𝑥
8 iotanul 5293 . . 3 (¬ ∃!𝑥 𝐴𝑥 → (℩𝑥𝐴𝑥) = ∅)
97, 8ax-mp 5 . 2 (℩𝑥𝐴𝑥) = ∅
101, 9eqtri 2250 1 (∅‘𝐴) = ∅
Colors of variables: wff set class
Syntax hints:  ¬ wn 3   = wceq 1395  wex 1538  ∃!weu 2077  wcel 2200  c0 3491  cop 3669   class class class wbr 4082  cio 5275  cfv 5317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-in 3203  df-ss 3210  df-nul 3492  df-sn 3672  df-uni 3888  df-br 4083  df-iota 5277  df-fv 5325
This theorem is referenced by:  fv2prc  5665  ccat1st1st  11167  strsl0  13076
  Copyright terms: Public domain W3C validator