Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 0fv | GIF version |
Description: Function value of the empty set. (Contributed by Stefan O'Rear, 26-Nov-2014.) |
Ref | Expression |
---|---|
0fv | ⊢ (∅‘𝐴) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fv 5196 | . 2 ⊢ (∅‘𝐴) = (℩𝑥𝐴∅𝑥) | |
2 | noel 3413 | . . . . . 6 ⊢ ¬ 〈𝐴, 𝑥〉 ∈ ∅ | |
3 | df-br 3983 | . . . . . 6 ⊢ (𝐴∅𝑥 ↔ 〈𝐴, 𝑥〉 ∈ ∅) | |
4 | 2, 3 | mtbir 661 | . . . . 5 ⊢ ¬ 𝐴∅𝑥 |
5 | 4 | nex 1488 | . . . 4 ⊢ ¬ ∃𝑥 𝐴∅𝑥 |
6 | euex 2044 | . . . 4 ⊢ (∃!𝑥 𝐴∅𝑥 → ∃𝑥 𝐴∅𝑥) | |
7 | 5, 6 | mto 652 | . . 3 ⊢ ¬ ∃!𝑥 𝐴∅𝑥 |
8 | iotanul 5168 | . . 3 ⊢ (¬ ∃!𝑥 𝐴∅𝑥 → (℩𝑥𝐴∅𝑥) = ∅) | |
9 | 7, 8 | ax-mp 5 | . 2 ⊢ (℩𝑥𝐴∅𝑥) = ∅ |
10 | 1, 9 | eqtri 2186 | 1 ⊢ (∅‘𝐴) = ∅ |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 = wceq 1343 ∃wex 1480 ∃!weu 2014 ∈ wcel 2136 ∅c0 3409 〈cop 3579 class class class wbr 3982 ℩cio 5151 ‘cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-in 3122 df-ss 3129 df-nul 3410 df-sn 3582 df-uni 3790 df-br 3983 df-iota 5153 df-fv 5196 |
This theorem is referenced by: strsl0 12442 |
Copyright terms: Public domain | W3C validator |