| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0fv | GIF version | ||
| Description: Function value of the empty set. (Contributed by Stefan O'Rear, 26-Nov-2014.) |
| Ref | Expression |
|---|---|
| 0fv | ⊢ (∅‘𝐴) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fv 5288 | . 2 ⊢ (∅‘𝐴) = (℩𝑥𝐴∅𝑥) | |
| 2 | noel 3468 | . . . . . 6 ⊢ ¬ 〈𝐴, 𝑥〉 ∈ ∅ | |
| 3 | df-br 4052 | . . . . . 6 ⊢ (𝐴∅𝑥 ↔ 〈𝐴, 𝑥〉 ∈ ∅) | |
| 4 | 2, 3 | mtbir 673 | . . . . 5 ⊢ ¬ 𝐴∅𝑥 |
| 5 | 4 | nex 1524 | . . . 4 ⊢ ¬ ∃𝑥 𝐴∅𝑥 |
| 6 | euex 2085 | . . . 4 ⊢ (∃!𝑥 𝐴∅𝑥 → ∃𝑥 𝐴∅𝑥) | |
| 7 | 5, 6 | mto 664 | . . 3 ⊢ ¬ ∃!𝑥 𝐴∅𝑥 |
| 8 | iotanul 5256 | . . 3 ⊢ (¬ ∃!𝑥 𝐴∅𝑥 → (℩𝑥𝐴∅𝑥) = ∅) | |
| 9 | 7, 8 | ax-mp 5 | . 2 ⊢ (℩𝑥𝐴∅𝑥) = ∅ |
| 10 | 1, 9 | eqtri 2227 | 1 ⊢ (∅‘𝐴) = ∅ |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 = wceq 1373 ∃wex 1516 ∃!weu 2055 ∈ wcel 2177 ∅c0 3464 〈cop 3641 class class class wbr 4051 ℩cio 5239 ‘cfv 5280 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-dif 3172 df-in 3176 df-ss 3183 df-nul 3465 df-sn 3644 df-uni 3857 df-br 4052 df-iota 5241 df-fv 5288 |
| This theorem is referenced by: fv2prc 5626 ccat1st1st 11116 strsl0 12956 |
| Copyright terms: Public domain | W3C validator |