![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0fv | GIF version |
Description: Function value of the empty set. (Contributed by Stefan O'Rear, 26-Nov-2014.) |
Ref | Expression |
---|---|
0fv | ⊢ (∅‘𝐴) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fv 5089 | . 2 ⊢ (∅‘𝐴) = (℩𝑥𝐴∅𝑥) | |
2 | noel 3333 | . . . . . 6 ⊢ ¬ 〈𝐴, 𝑥〉 ∈ ∅ | |
3 | df-br 3896 | . . . . . 6 ⊢ (𝐴∅𝑥 ↔ 〈𝐴, 𝑥〉 ∈ ∅) | |
4 | 2, 3 | mtbir 643 | . . . . 5 ⊢ ¬ 𝐴∅𝑥 |
5 | 4 | nex 1459 | . . . 4 ⊢ ¬ ∃𝑥 𝐴∅𝑥 |
6 | euex 2005 | . . . 4 ⊢ (∃!𝑥 𝐴∅𝑥 → ∃𝑥 𝐴∅𝑥) | |
7 | 5, 6 | mto 634 | . . 3 ⊢ ¬ ∃!𝑥 𝐴∅𝑥 |
8 | iotanul 5061 | . . 3 ⊢ (¬ ∃!𝑥 𝐴∅𝑥 → (℩𝑥𝐴∅𝑥) = ∅) | |
9 | 7, 8 | ax-mp 7 | . 2 ⊢ (℩𝑥𝐴∅𝑥) = ∅ |
10 | 1, 9 | eqtri 2135 | 1 ⊢ (∅‘𝐴) = ∅ |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 = wceq 1314 ∃wex 1451 ∈ wcel 1463 ∃!weu 1975 ∅c0 3329 〈cop 3496 class class class wbr 3895 ℩cio 5044 ‘cfv 5081 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 |
This theorem depends on definitions: df-bi 116 df-tru 1317 df-fal 1320 df-nf 1420 df-sb 1719 df-eu 1978 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ral 2395 df-rex 2396 df-v 2659 df-dif 3039 df-in 3043 df-ss 3050 df-nul 3330 df-sn 3499 df-uni 3703 df-br 3896 df-iota 5046 df-fv 5089 |
This theorem is referenced by: strsl0 11850 |
Copyright terms: Public domain | W3C validator |