ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0fv GIF version

Theorem 0fv 5606
Description: Function value of the empty set. (Contributed by Stefan O'Rear, 26-Nov-2014.)
Assertion
Ref Expression
0fv (∅‘𝐴) = ∅

Proof of Theorem 0fv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-fv 5276 . 2 (∅‘𝐴) = (℩𝑥𝐴𝑥)
2 noel 3463 . . . . . 6 ¬ ⟨𝐴, 𝑥⟩ ∈ ∅
3 df-br 4044 . . . . . 6 (𝐴𝑥 ↔ ⟨𝐴, 𝑥⟩ ∈ ∅)
42, 3mtbir 672 . . . . 5 ¬ 𝐴𝑥
54nex 1522 . . . 4 ¬ ∃𝑥 𝐴𝑥
6 euex 2083 . . . 4 (∃!𝑥 𝐴𝑥 → ∃𝑥 𝐴𝑥)
75, 6mto 663 . . 3 ¬ ∃!𝑥 𝐴𝑥
8 iotanul 5244 . . 3 (¬ ∃!𝑥 𝐴𝑥 → (℩𝑥𝐴𝑥) = ∅)
97, 8ax-mp 5 . 2 (℩𝑥𝐴𝑥) = ∅
101, 9eqtri 2225 1 (∅‘𝐴) = ∅
Colors of variables: wff set class
Syntax hints:  ¬ wn 3   = wceq 1372  wex 1514  ∃!weu 2053  wcel 2175  c0 3459  cop 3635   class class class wbr 4043  cio 5227  cfv 5268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-dif 3167  df-in 3171  df-ss 3178  df-nul 3460  df-sn 3638  df-uni 3850  df-br 4044  df-iota 5229  df-fv 5276
This theorem is referenced by:  fv2prc  5607  strsl0  12800
  Copyright terms: Public domain W3C validator