![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0fv | GIF version |
Description: Function value of the empty set. (Contributed by Stefan O'Rear, 26-Nov-2014.) |
Ref | Expression |
---|---|
0fv | ⊢ (∅‘𝐴) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fv 5262 | . 2 ⊢ (∅‘𝐴) = (℩𝑥𝐴∅𝑥) | |
2 | noel 3450 | . . . . . 6 ⊢ ¬ 〈𝐴, 𝑥〉 ∈ ∅ | |
3 | df-br 4030 | . . . . . 6 ⊢ (𝐴∅𝑥 ↔ 〈𝐴, 𝑥〉 ∈ ∅) | |
4 | 2, 3 | mtbir 672 | . . . . 5 ⊢ ¬ 𝐴∅𝑥 |
5 | 4 | nex 1511 | . . . 4 ⊢ ¬ ∃𝑥 𝐴∅𝑥 |
6 | euex 2072 | . . . 4 ⊢ (∃!𝑥 𝐴∅𝑥 → ∃𝑥 𝐴∅𝑥) | |
7 | 5, 6 | mto 663 | . . 3 ⊢ ¬ ∃!𝑥 𝐴∅𝑥 |
8 | iotanul 5230 | . . 3 ⊢ (¬ ∃!𝑥 𝐴∅𝑥 → (℩𝑥𝐴∅𝑥) = ∅) | |
9 | 7, 8 | ax-mp 5 | . 2 ⊢ (℩𝑥𝐴∅𝑥) = ∅ |
10 | 1, 9 | eqtri 2214 | 1 ⊢ (∅‘𝐴) = ∅ |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 = wceq 1364 ∃wex 1503 ∃!weu 2042 ∈ wcel 2164 ∅c0 3446 〈cop 3621 class class class wbr 4029 ℩cio 5213 ‘cfv 5254 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-dif 3155 df-in 3159 df-ss 3166 df-nul 3447 df-sn 3624 df-uni 3836 df-br 4030 df-iota 5215 df-fv 5262 |
This theorem is referenced by: fv2prc 5591 strsl0 12667 |
Copyright terms: Public domain | W3C validator |