ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0fv GIF version

Theorem 0fv 5531
Description: Function value of the empty set. (Contributed by Stefan O'Rear, 26-Nov-2014.)
Assertion
Ref Expression
0fv (∅‘𝐴) = ∅

Proof of Theorem 0fv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-fv 5206 . 2 (∅‘𝐴) = (℩𝑥𝐴𝑥)
2 noel 3418 . . . . . 6 ¬ ⟨𝐴, 𝑥⟩ ∈ ∅
3 df-br 3990 . . . . . 6 (𝐴𝑥 ↔ ⟨𝐴, 𝑥⟩ ∈ ∅)
42, 3mtbir 666 . . . . 5 ¬ 𝐴𝑥
54nex 1493 . . . 4 ¬ ∃𝑥 𝐴𝑥
6 euex 2049 . . . 4 (∃!𝑥 𝐴𝑥 → ∃𝑥 𝐴𝑥)
75, 6mto 657 . . 3 ¬ ∃!𝑥 𝐴𝑥
8 iotanul 5175 . . 3 (¬ ∃!𝑥 𝐴𝑥 → (℩𝑥𝐴𝑥) = ∅)
97, 8ax-mp 5 . 2 (℩𝑥𝐴𝑥) = ∅
101, 9eqtri 2191 1 (∅‘𝐴) = ∅
Colors of variables: wff set class
Syntax hints:  ¬ wn 3   = wceq 1348  wex 1485  ∃!weu 2019  wcel 2141  c0 3414  cop 3586   class class class wbr 3989  cio 5158  cfv 5198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-dif 3123  df-in 3127  df-ss 3134  df-nul 3415  df-sn 3589  df-uni 3797  df-br 3990  df-iota 5160  df-fv 5206
This theorem is referenced by:  strsl0  12464
  Copyright terms: Public domain W3C validator