ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0fv GIF version

Theorem 0fv 5521
Description: Function value of the empty set. (Contributed by Stefan O'Rear, 26-Nov-2014.)
Assertion
Ref Expression
0fv (∅‘𝐴) = ∅

Proof of Theorem 0fv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-fv 5196 . 2 (∅‘𝐴) = (℩𝑥𝐴𝑥)
2 noel 3413 . . . . . 6 ¬ ⟨𝐴, 𝑥⟩ ∈ ∅
3 df-br 3983 . . . . . 6 (𝐴𝑥 ↔ ⟨𝐴, 𝑥⟩ ∈ ∅)
42, 3mtbir 661 . . . . 5 ¬ 𝐴𝑥
54nex 1488 . . . 4 ¬ ∃𝑥 𝐴𝑥
6 euex 2044 . . . 4 (∃!𝑥 𝐴𝑥 → ∃𝑥 𝐴𝑥)
75, 6mto 652 . . 3 ¬ ∃!𝑥 𝐴𝑥
8 iotanul 5168 . . 3 (¬ ∃!𝑥 𝐴𝑥 → (℩𝑥𝐴𝑥) = ∅)
97, 8ax-mp 5 . 2 (℩𝑥𝐴𝑥) = ∅
101, 9eqtri 2186 1 (∅‘𝐴) = ∅
Colors of variables: wff set class
Syntax hints:  ¬ wn 3   = wceq 1343  wex 1480  ∃!weu 2014  wcel 2136  c0 3409  cop 3579   class class class wbr 3982  cio 5151  cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-dif 3118  df-in 3122  df-ss 3129  df-nul 3410  df-sn 3582  df-uni 3790  df-br 3983  df-iota 5153  df-fv 5196
This theorem is referenced by:  strsl0  12442
  Copyright terms: Public domain W3C validator