| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0fv | GIF version | ||
| Description: Function value of the empty set. (Contributed by Stefan O'Rear, 26-Nov-2014.) |
| Ref | Expression |
|---|---|
| 0fv | ⊢ (∅‘𝐴) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fv 5325 | . 2 ⊢ (∅‘𝐴) = (℩𝑥𝐴∅𝑥) | |
| 2 | noel 3495 | . . . . . 6 ⊢ ¬ 〈𝐴, 𝑥〉 ∈ ∅ | |
| 3 | df-br 4083 | . . . . . 6 ⊢ (𝐴∅𝑥 ↔ 〈𝐴, 𝑥〉 ∈ ∅) | |
| 4 | 2, 3 | mtbir 675 | . . . . 5 ⊢ ¬ 𝐴∅𝑥 |
| 5 | 4 | nex 1546 | . . . 4 ⊢ ¬ ∃𝑥 𝐴∅𝑥 |
| 6 | euex 2107 | . . . 4 ⊢ (∃!𝑥 𝐴∅𝑥 → ∃𝑥 𝐴∅𝑥) | |
| 7 | 5, 6 | mto 666 | . . 3 ⊢ ¬ ∃!𝑥 𝐴∅𝑥 |
| 8 | iotanul 5293 | . . 3 ⊢ (¬ ∃!𝑥 𝐴∅𝑥 → (℩𝑥𝐴∅𝑥) = ∅) | |
| 9 | 7, 8 | ax-mp 5 | . 2 ⊢ (℩𝑥𝐴∅𝑥) = ∅ |
| 10 | 1, 9 | eqtri 2250 | 1 ⊢ (∅‘𝐴) = ∅ |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 = wceq 1395 ∃wex 1538 ∃!weu 2077 ∈ wcel 2200 ∅c0 3491 〈cop 3669 class class class wbr 4082 ℩cio 5275 ‘cfv 5317 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-in 3203 df-ss 3210 df-nul 3492 df-sn 3672 df-uni 3888 df-br 4083 df-iota 5277 df-fv 5325 |
| This theorem is referenced by: fv2prc 5665 ccat1st1st 11167 strsl0 13076 |
| Copyright terms: Public domain | W3C validator |