Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 0fv | GIF version |
Description: Function value of the empty set. (Contributed by Stefan O'Rear, 26-Nov-2014.) |
Ref | Expression |
---|---|
0fv | ⊢ (∅‘𝐴) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fv 5206 | . 2 ⊢ (∅‘𝐴) = (℩𝑥𝐴∅𝑥) | |
2 | noel 3418 | . . . . . 6 ⊢ ¬ 〈𝐴, 𝑥〉 ∈ ∅ | |
3 | df-br 3990 | . . . . . 6 ⊢ (𝐴∅𝑥 ↔ 〈𝐴, 𝑥〉 ∈ ∅) | |
4 | 2, 3 | mtbir 666 | . . . . 5 ⊢ ¬ 𝐴∅𝑥 |
5 | 4 | nex 1493 | . . . 4 ⊢ ¬ ∃𝑥 𝐴∅𝑥 |
6 | euex 2049 | . . . 4 ⊢ (∃!𝑥 𝐴∅𝑥 → ∃𝑥 𝐴∅𝑥) | |
7 | 5, 6 | mto 657 | . . 3 ⊢ ¬ ∃!𝑥 𝐴∅𝑥 |
8 | iotanul 5175 | . . 3 ⊢ (¬ ∃!𝑥 𝐴∅𝑥 → (℩𝑥𝐴∅𝑥) = ∅) | |
9 | 7, 8 | ax-mp 5 | . 2 ⊢ (℩𝑥𝐴∅𝑥) = ∅ |
10 | 1, 9 | eqtri 2191 | 1 ⊢ (∅‘𝐴) = ∅ |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 = wceq 1348 ∃wex 1485 ∃!weu 2019 ∈ wcel 2141 ∅c0 3414 〈cop 3586 class class class wbr 3989 ℩cio 5158 ‘cfv 5198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-dif 3123 df-in 3127 df-ss 3134 df-nul 3415 df-sn 3589 df-uni 3797 df-br 3990 df-iota 5160 df-fv 5206 |
This theorem is referenced by: strsl0 12464 |
Copyright terms: Public domain | W3C validator |