ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0fv GIF version

Theorem 0fv 5625
Description: Function value of the empty set. (Contributed by Stefan O'Rear, 26-Nov-2014.)
Assertion
Ref Expression
0fv (∅‘𝐴) = ∅

Proof of Theorem 0fv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-fv 5288 . 2 (∅‘𝐴) = (℩𝑥𝐴𝑥)
2 noel 3468 . . . . . 6 ¬ ⟨𝐴, 𝑥⟩ ∈ ∅
3 df-br 4052 . . . . . 6 (𝐴𝑥 ↔ ⟨𝐴, 𝑥⟩ ∈ ∅)
42, 3mtbir 673 . . . . 5 ¬ 𝐴𝑥
54nex 1524 . . . 4 ¬ ∃𝑥 𝐴𝑥
6 euex 2085 . . . 4 (∃!𝑥 𝐴𝑥 → ∃𝑥 𝐴𝑥)
75, 6mto 664 . . 3 ¬ ∃!𝑥 𝐴𝑥
8 iotanul 5256 . . 3 (¬ ∃!𝑥 𝐴𝑥 → (℩𝑥𝐴𝑥) = ∅)
97, 8ax-mp 5 . 2 (℩𝑥𝐴𝑥) = ∅
101, 9eqtri 2227 1 (∅‘𝐴) = ∅
Colors of variables: wff set class
Syntax hints:  ¬ wn 3   = wceq 1373  wex 1516  ∃!weu 2055  wcel 2177  c0 3464  cop 3641   class class class wbr 4051  cio 5239  cfv 5280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-dif 3172  df-in 3176  df-ss 3183  df-nul 3465  df-sn 3644  df-uni 3857  df-br 4052  df-iota 5241  df-fv 5288
This theorem is referenced by:  fv2prc  5626  ccat1st1st  11116  strsl0  12956
  Copyright terms: Public domain W3C validator