| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0fv | GIF version | ||
| Description: Function value of the empty set. (Contributed by Stefan O'Rear, 26-Nov-2014.) |
| Ref | Expression |
|---|---|
| 0fv | ⊢ (∅‘𝐴) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fv 5276 | . 2 ⊢ (∅‘𝐴) = (℩𝑥𝐴∅𝑥) | |
| 2 | noel 3463 | . . . . . 6 ⊢ ¬ 〈𝐴, 𝑥〉 ∈ ∅ | |
| 3 | df-br 4044 | . . . . . 6 ⊢ (𝐴∅𝑥 ↔ 〈𝐴, 𝑥〉 ∈ ∅) | |
| 4 | 2, 3 | mtbir 672 | . . . . 5 ⊢ ¬ 𝐴∅𝑥 |
| 5 | 4 | nex 1522 | . . . 4 ⊢ ¬ ∃𝑥 𝐴∅𝑥 |
| 6 | euex 2083 | . . . 4 ⊢ (∃!𝑥 𝐴∅𝑥 → ∃𝑥 𝐴∅𝑥) | |
| 7 | 5, 6 | mto 663 | . . 3 ⊢ ¬ ∃!𝑥 𝐴∅𝑥 |
| 8 | iotanul 5244 | . . 3 ⊢ (¬ ∃!𝑥 𝐴∅𝑥 → (℩𝑥𝐴∅𝑥) = ∅) | |
| 9 | 7, 8 | ax-mp 5 | . 2 ⊢ (℩𝑥𝐴∅𝑥) = ∅ |
| 10 | 1, 9 | eqtri 2225 | 1 ⊢ (∅‘𝐴) = ∅ |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 = wceq 1372 ∃wex 1514 ∃!weu 2053 ∈ wcel 2175 ∅c0 3459 〈cop 3635 class class class wbr 4043 ℩cio 5227 ‘cfv 5268 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-dif 3167 df-in 3171 df-ss 3178 df-nul 3460 df-sn 3638 df-uni 3850 df-br 4044 df-iota 5229 df-fv 5276 |
| This theorem is referenced by: fv2prc 5607 strsl0 12800 |
| Copyright terms: Public domain | W3C validator |